追補A - 105℃でのATtiny25/V仕様

この資料は105℃までの温度で動作するデバイスを詳述する情報を含みます。この追補では偏差だけが網羅され、他の全ての情報は完全なデータシートで得られます。完全なデータシートはwww. atmel.comで得られます。

8ビット AVP® マイクロ コントローラ 実装書き換え可能な 2Kバイト フラッシュ メモリ内蔵

ATtiny25 ATtiny25V

追補A

本書は一般の方々の便宜のため有志に より作成されたもので、Atmel社とは無関 係であることを御承知ください。しおりの [はじめに]での内容にご注意ください。

Rev. 2586N-A-08/11, 2586NJ3-A-04/22

1. 電気的特性

1.1. 絶対最大定格 (警告)

動作温度 ・・・・・・・・・・・・・・・55℃~+125℃
保存温度 ・・・・・-65℃~+150℃
RESETを除くピン許容電圧 ・・・・・・・ -0.5V ~ VCC+0.5V
RESETピン許容電圧 ・・・・・ -0.5V ~ +13.0V
最大動作電圧 ····· 6.0V
入出力ピン出力電流 ・・・・・・・・・・・・・・・・・・・・・・ 40.0 mA
消費電流 •••••• 200.0 mA

(警告)

絶対最大定格を超える負担はデバイスに定常的な損傷を与えます。 絶対最大定格は負担の定格を示すためだけのもので、この値また は、この仕様書の動作特性で示された値を超える条件で動作する ことを示すものではありません。長時間の最大定格での使用はデバ イスの信頼性を損なう場合があります。

1.2. DC特性

表1-1. DC特性 TA=-40℃~105℃

シンボル	項目	条件	最小	代表 (<mark>注1</mark>)	最大	単位
VIL	Lowレベル入力電圧	VCC=1.8~2.4V	-0.5		0.2VCC (注2)	
VIL	(XTAL1,RESETを除く)	VCC=2.4~5.5V	-0.5		0.3VCC (注2)	
VIL1	Lowレヘル入力電圧 (XTAL1)	VCC=1.8~5.5V	-0.5		0.1VCC (注2)	
VIL2	Lowレヘル入力電圧 (RESET)	VCC=1.8~5.5V	-0.5		0.2VCC (注2)	
VIL3	Lowレベル入力電圧	VCC=1.8~2.4V	-0.5		0.2VCC (注2)	
VIL3	(I/OとしてのRESET)	VCC=2.4~5.5V	-0.5		0.3VCC (注2)	
VIH	Highレヘル入力電圧	VCC=1.8~2.4V	0.7VCC (注3)		VCC+0.5	
• 11 1	(XTAL1,RESETを除く)	VCC=2.4~5.5V	0.6VCC (注3)		VCC+0.5	
VIH1	Highレベル入力電圧 (XTAL1)	VCC=1.8~2.4V	0.8VCC (注3)		VCC+0.5	V
v 11 11		VCC=2.4~5.5V	0.7VCC (注3)		VCC+0.5	
VIH2	Highレヘル入力電圧 (RESET)	VCC=1.8~5.5V	0.9VCC (注3)		VCC+0.5	
VIH3	Highレヘル入力電圧	VCC=1.8~2.4V	0.7VCC (注3)		VCC+0.5	
• 11 15	(I/OとしてのRESET)	VCC=2.4~5.5V	0.6VCC (注3)		VCC+0.5	
Vol	Lレヘブル出力電圧 (DESET()た)た)た(注4)	IOL=10mA, VCC=5V			0.6	
VOL	(RESEI(注O)を除く)	IOL=5mA, VCC=3V			0.5	
VOH	Hレベル出力電圧 (DESET()た)た)た(注5)	IOH=-10mA, VCC=5V	4.3			
v OII	(RESET(注6)を除く) (注5)	IOH=-5mA, VCC=3V	2.5			
IIL	I/OビンLowレベル入力漏れ電流	VCC=5.5V		< 0.05	1	μA
IIH	I/OビンHighレヘル入力漏れ電流	確実なH/L範囲		< 0.05	1	μ. ι
RRST	RESET ビン プルアップ 抵抗	VCC=5.5V, Low入力	30		60	kΩ
Rpu	I/Oピン プルアップ抵抗	VCC=5.5V, Low入力	20		50	N 52
		VCC=2V, 1MHz		0.3	0.55	
	活動動作消費電流 (注7)	VCC=3V, 4MHz		1.5	2.5	
		VCC=5V, 8MHz		5	8	mA
ICC		VCC=2V, 1MHz		0.1	0.2	1117 1
	アイドル動作消費電流 (注7)	VCC=3V, 4MHz		0.35	0.6	
		VCC=5V, 8MHz		1.2	2	
	パワーダウン動作消費電流 (注8)	VCC=3V, WDT有効		4	20	μA
		VCC=3V,WDT禁止		0.2	10	μΛ

注1:25℃での代表値です。

注2: Lowレベルの認識が保証される最高電圧です。

注3: Highレベルの認識が保証される最低電圧です。

(注4)~(注8)は次頁を参照してください。

注4: 各I/Oポートは安定状態(非過渡時)に於いて検査条件(VCC=5Vで10mA、VCC=3Vで5mA)よりも多くの吸い込み電流を流すことができますが、次の条件を厳守してください。

① 全ポートのIOLの合計が60mAを超えるべきではありません。

IOLが検査条件を超える場合、VOLも仕様書での値を超えます。表の検査条件よりも大きな吸い込み電流を流すことは保証 されません。

注5: 各I/Oポートは安定状態(非過渡時)に於いて検査条件(VCC=5Vで10mA、VCC=3Vで5mA)よりも多くの吐き出し電流を流すことができますが、次の条件を厳守してください。

① 全ポートのIOHの合計が60mAを超えるべきではありません。

IOHが検査条件を超える場合、VOHも仕様書での値を超えます。表の検査条件よりも大きな吐き出し電流を流すことは保証 されません。

- 注6: RESETピンはプログラミング動作での操作と移行時に高電圧を許容しなければならず、その結果として標準I/Oピンと比べて弱い 駆動能力を持ちます。
- 注7: 完全なデータシートの25頁の「消費電力の最小化」で記述された方法を用いた外部クロックでの値です。電力削減が許可(PRR= \$FF)され、I/Oの駆動はありません。
- <u>注8</u>: 低電圧検出器(BOD)禁止です。

1.3. クロック特性

1.3.1. 校正付き内蔵RC発振器精度

工場既定校正よりも高い精度に内蔵発振器を手動校正することが可能です。この発振器周波数が温度と電圧に依存することに注意してください。電圧と温度の特性は19頁の図2-36.と図2-37.で得られます。

表1-2. 校正付き内蔵RC発振器の校正精度

校正種別	周波数	VCC	温度	校正精度 (<mark>注1</mark>)
工場校正	8.0MHz (<mark>注2</mark>)	3V	25°C	±10%
使用者校正	6~8MHz 内の固定周波数	1.8~5.5V(<mark>注3</mark>), 2.7~5.5V(<mark>注4</mark>) 内の固定電圧	-40~105℃ 内の固定温度	±1%

注1: 校正点での発振器周波数精度(固定温度と固定電圧)

注2: ATtiny25Vのみ: ATtiny15互換動作での6.4MHz

<u>注</u>3: ATtiny25Vに対する電圧範囲

注4: ATtiny25に対する電圧範囲

1.4. システムとリセットの特性

表1-3. システムとリセットの電気的特性

シンホ゛ル	項目	条件	最小	代表	最大	単位
V _{RST}	RESETピン閾値電圧	VCC=3V	0.2VCC		0.9VCC	V
t _{RST}	RESETピンでの最小パルス幅	VCC-3V		2.5		μs
V _{HYST}	低電圧検出ヒステリシス電圧			50		mV
t _{BOD}	最小低電圧検出時間			2		μs
V _{BG}	基準電圧		1.0	1.1	1.2	V
t _{BG}	起動時間	VCC=5V TA=25°C		40	70	μs
I _{BG}	消費電流	1A-23 C		15		μA

<u>注</u>: 値は指針だけです。

1.4.1. 強化電源ONリセット

下表は電源ONリセットの特性を記述します。

表1-4. 強化電源ONリセット特性 (TA=-40℃~105℃)

シンホール	項目	最小	代表	最大	単位
V _{POR}	電源ONリセット開放閾値電圧(注1)	1.1	1.4	1.7	V
V _{POA}	電源ONリセット活性閾値電圧 (<mark>注2</mark>)	0.6	1.3	1.7	
SR _{ON}	電源投入時上昇率	0.01			V/ms

注: 値は指針だけです。

注1: 電圧上昇時にデバイスがリセットから開放される閾値電圧です。

注2:供給電圧がVPOA未満でなければ電源ONリセットは動作しません(電圧下降時)。

1.5. A/D変換器特性 (暫定)

シンホ	ヾル	項目		条件		最小	代表	最大	単位
		分解能						10	ビット
			VCC=4V	変換クロック=20	0kHz		2		
		絶対精度	VREF=4V	変換クロック=1N	1Hz		3		
		(INL,DNL,利得,オフセット, 量子化誤差を含む)	雑音低	雑音低 変換クロック=200kl			1.5		
		重111版在2日37	減動作 変換クロック=1MF		1Hz		2.5		LSE
レ ブ レ		積分性非直線誤差(INL) (オフセット,利得誤差校正後)	VCC=4V				1		
		微分性非直線誤差(DNL)	VREF=4V				0.5		1
ř.		利得誤差	変換クロック=	=200kHz			2.5		1
5		オフセット(セ゛ロ)誤差					1.5		
ロノド し い い し い し い し い し い し い し い し い し い い い い い い い い い い い い い		変換クロック周波数				50		1000	kН
2		変換時間	連続変換重	动作		14		280	μs
ARE	EF	外部基準電圧				2.0		VCC	V
VI	N	入力電圧				GND		VREF	
		入力周波数帯域					38.4		kH
					$\times 1$			10	ビッ
		分解能			$\times 20$			10	
		絶対精度			$\times 1$		10.0		
		(INL,DNL,利得,オフセット, 量子化誤差を含む)			×20		20.0		
		積分性非直線誤差(INL)	VCC=5V		$\times 1$		4.0		
旦 寂		(オフセット,利得誤差校正後)	VREF=4V		$\times 20$		10.0		LS
		利得誤差	変換クロック=	=50~200kHz	$\times 1$		10.0		
边		利特缺左			$\times 20$		15.0		
5		オフセット(セ [゛] ロ)誤差			$\times 1$		3.0		
単 亟 皇 助 し 変 奥 一 一		4719代11的缺左					4.0		
₽		変換クロック周波数				50		200	kH
		変換時間	連続変換動作			70		280	μs
Are		外部基準電圧				2.0		VCC-1.0	
VII		入力電圧				GND		VCC	V
VDI	FF	差動入力電圧差						VREF/利得	
		入力周波数帯域					4		kH

次頁に続く

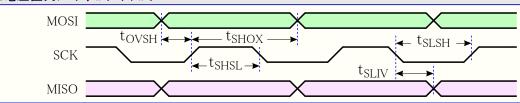
(訳注) 原書の表1-5.~7.は表1-5.として統合しました。

4

表	−5 (続き). A/D変換特性 (TA=-40℃	C∼105°C)					
	シンボル	項目	条件		最小	代表	最大	単位
		分解能		$\times 1$			10	ビット
		刀所用		$\times 20$			10	L yr
		絶対精度 (INL,DNL,利得,オフセット,		$\times 1$		8.0		
		量子化誤差を含む)		$\times 20$		8.0		
		積分性非直線誤差(INL)	VCC=5V	$\times 1$		4.0		
回板		(オフセット,利得誤差校正後)	VREF=4V	$\times 20$		5.0		LSB
差		利得誤差	変換クロック=50~200kHz	$\times 1$		4.0		
動		机付缺足		$\times 20$		5.0		
両極差動入力変換		オフセット(セ [゛] ロ)誤差		$\times 1$		3.0		
変換				$\times 20$		4.0		
授		変換クロック周波数			50		200	kHz
		変換時間	連続変換動作		70		280	μs
	AREF	外部基準電圧			2.0		VCC-1.0	
	VIN	入力電圧			GND		VCC	V
	VDIFF	差動入力電圧差					VREF/利得	
		入力周波数帯域				4		kHz
		A/D変換出力	単極動作		0		1023	LSB
		7/10支读山기	両極動作		-512		511	LOD
共通	VINT	内部基準電圧			1.0	1.1	1.2	V
通	V IIN I	内部2.56V基準電圧 (<mark>注</mark>)	VCC>3V		2.3	2.56	2.8	v
	R _{REF}	基準電圧入力インピーダンス				32		kΩ
	RAIN	アナログ入力インピーダンス				100		MΩ
注	値け指領	針の意味だけです。						

注: 値は指針の意味だけです。

(訳注)原書の表1-5.~7.は表1-5.として統合しました。



1.6. 低電圧直列プログラミング特性

Ň	[1−1. 低電圧直列プログラ	ミングバイト通信	言波形							
	直列データ入力(MOSI) _	MSB X	X	X	X	X	X		LSB	
	直列データ出力(MISO) _	MSB X	Х	Х	X	X	X		LSB	
	直列クロック入力(SCK) _									
	データ入力採取位置	4	†	A	A	†	A	1	†	

図1-2. 低電圧直列プログラミング タイミング

表1-8. 低電圧直列プログラミング特性(特記条件を除いて、TA=-40℃~105℃, VCC=1.8~5.5V)

シンホ゛ル	項目		最小	代表	最大	単位
			0		4	
1/tclcl	発振器周波数	$2.7 \sim 4.5 V$	0		10	MHz
		$4.5 \sim 5.5 V$	0		20	
		$1.8 \sim 2.7 V$	250			
t _{CLCL}	発振器周期	$2.7 \sim 4.5 V$	100			
		$4.5 \sim 5.5 V$	50			
t _{SHSL}	SCKパルスHレヘブル幅	(<mark>注</mark> 1)	2tclcl			20
tslsh	SCKパルスLレヘブル幅	(<mark>注</mark> 1)	2tclcl			ns
tovsh	SCK↑に対するMOSI準備時間		tclcl			
t _{SHOX}	SCK↑に対するMOSI保持時間		2tclcl			
t _{SLIV}	SCK↓に対するMISO出力遅延時間				100	

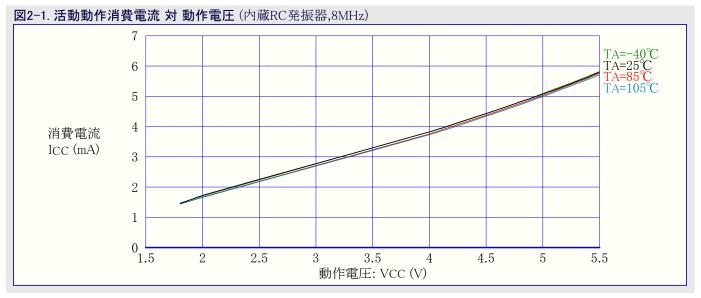
注1: $f_{CK} < 12$ MHz時2t_{CLCL}、 $f_{CK} \ge 12$ MHz時3t_{CLCL}。

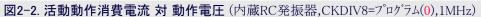
2. 代表特性

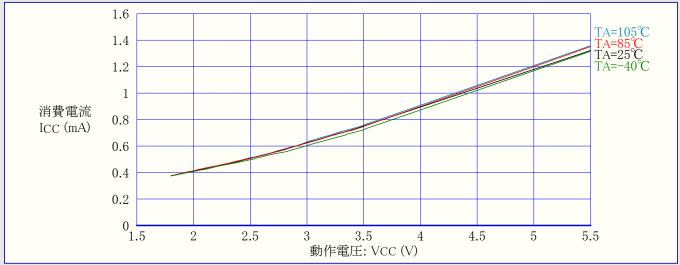
本項内に含まれたデータは主に同じ製法と設計法の類似デバイスの特徴付けとシミュレーションに基いています。従って、このデータはデバイスがどう反応するかについての指標として扱われるべきです。

以下の図は代表的な特性を示します。これらの図は製造中に検査されていません。全ての消費電流測定は全I/Oピンを入力として設定した内部プルアップ許可で行われています。電源幅振幅の方形波発振器がクロック源として使われています。

パワーダウン動作での消費電力はクロック選択と無関係です。

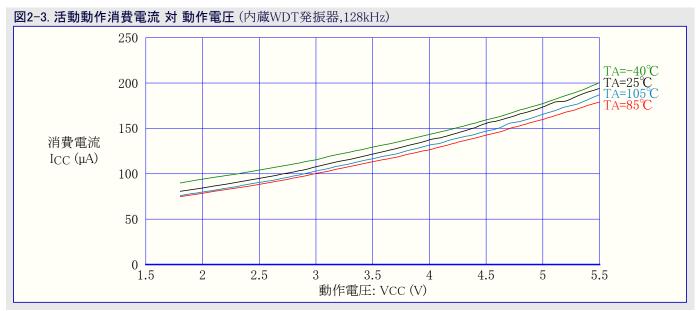

消費電流は動作電圧、動作周波数、I/Oピンの負荷、I/Oピンの切り替え速度、命令実行、周囲温度のような様々な要素の関数です。 支配的な要素は動作電圧と動作周波数です。


容量性負荷のピンの引き込み電流は(1つのピンに対して) CL(負荷容量)×VCC(動作電圧)×f(I/Oピンの平均切り替え周波数) として推測できます。

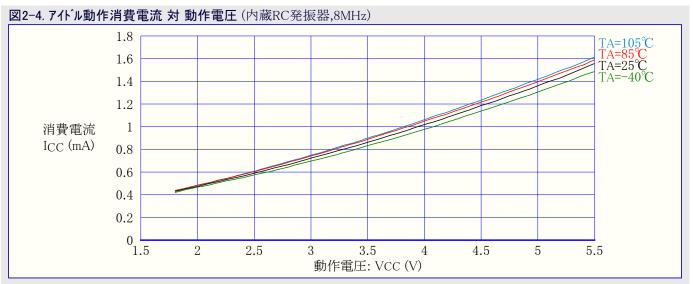
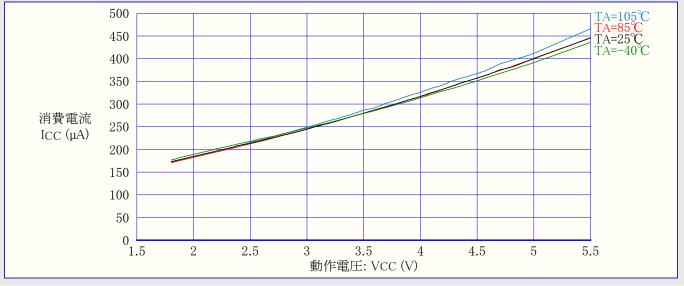
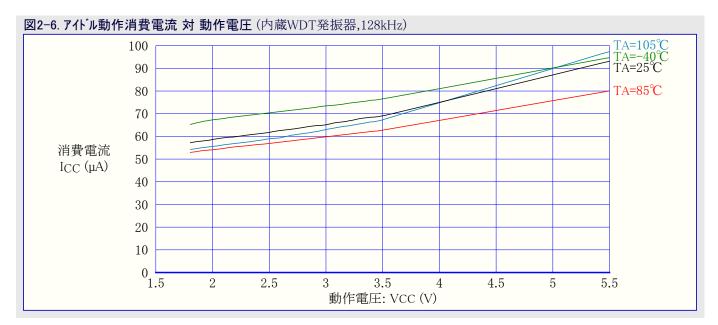
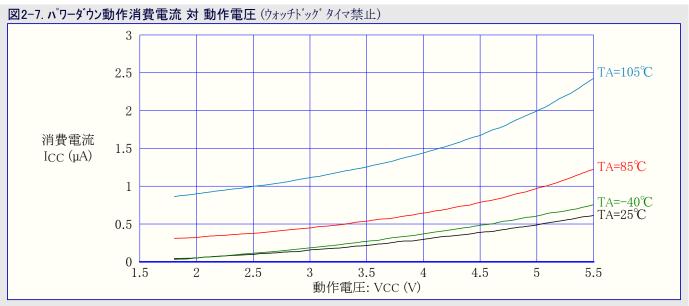

デバイスは検査範囲よりも高い周波数特性を示します。デバイスは注文番号が示す周波数よりも高い周波数での機能特性を保証されません。

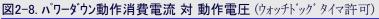
ウォッチトック タイマ許可のパワーダウン動作での消費電流とウォッチトック タイマ禁止のパワーダウン動作での消費電流間の違いは、ウォッチトック タイマによって引き込んだ(消費した)差電流を表します。

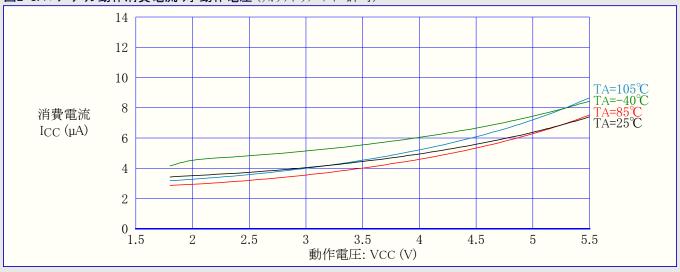
2.1. 活動動作消費電流



2.2. アイトル動作消費電流


図2-5. 71/ル動作消費電流対動作電圧(内蔵RC発振器,CKDIV8=プログラム(0),1MHz)



2.3. パワーダウン動作消費電流

2.4. ヒ[°]ン フ[°]ルアッフ[°]

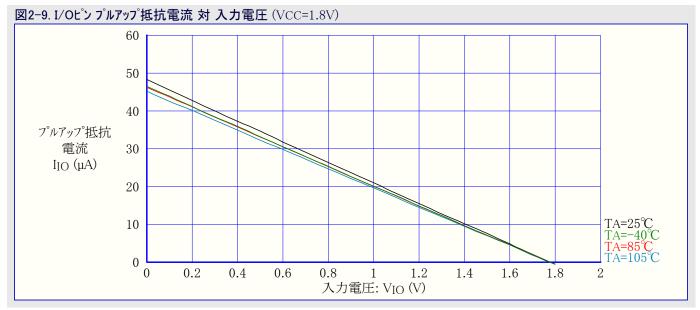


図2-10. I/Oピン プルアップ抵抗電流 対 入力電圧 (VCC=2.7V)

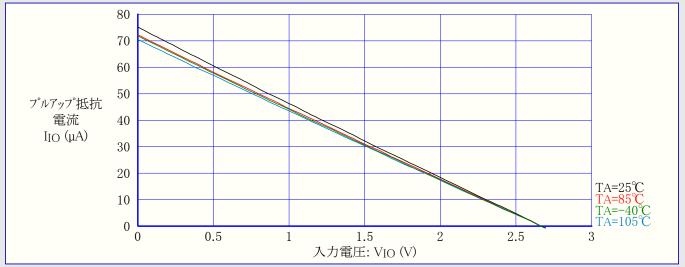
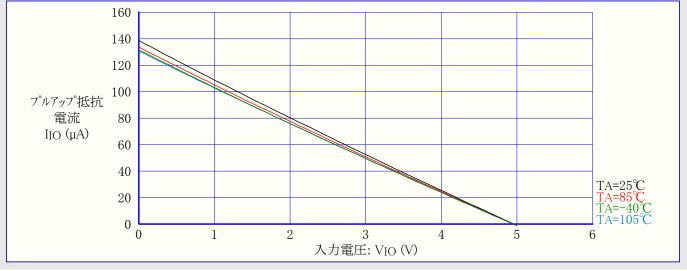



図2-11. I/Oピンプルアップ抵抗電流 対 入力電圧 (VCC=5V)

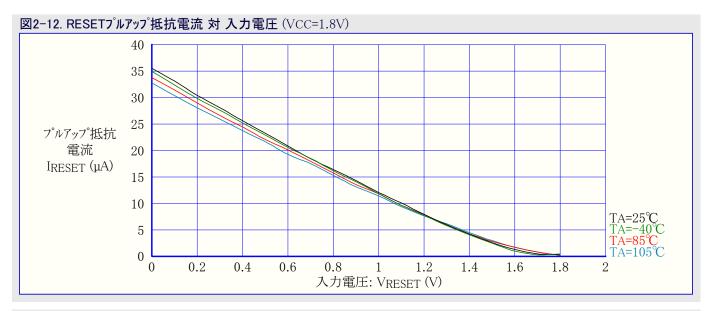
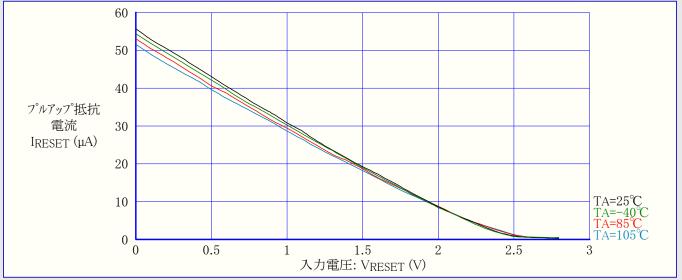
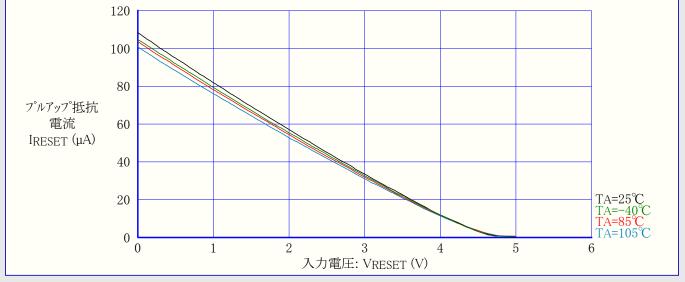
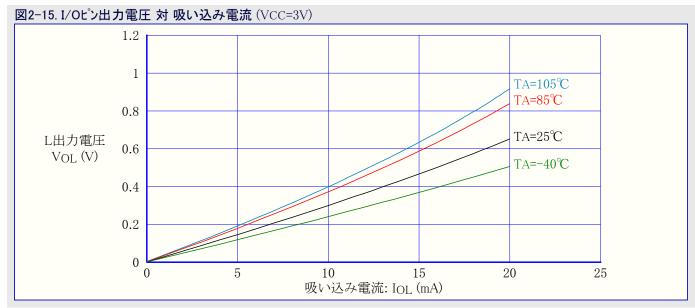
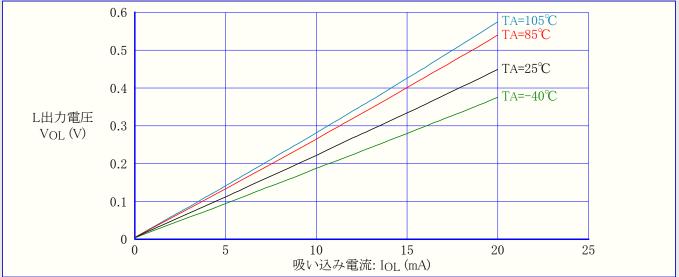


図2-13. RESETプルアップ抵抗電流 対 入力電圧 (VCC=2.7V)


図2-14. RESETプルアップ抵抗電流 対 入力電圧 (VCC=5V)



2.5. ピン駆動能力

図2-17. I/Oピン出力電圧 対 吐き出し電流 (VCC=3V)

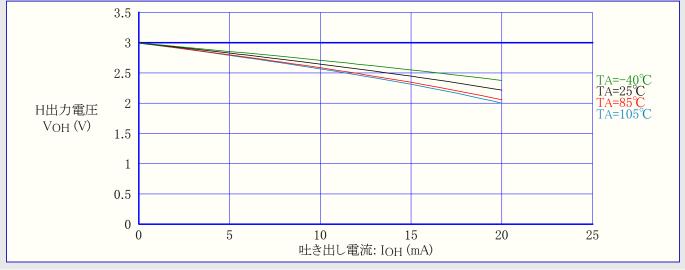


図2-18. I/Oピン出力電圧 対 吐き出し電流 (VCC=5V)

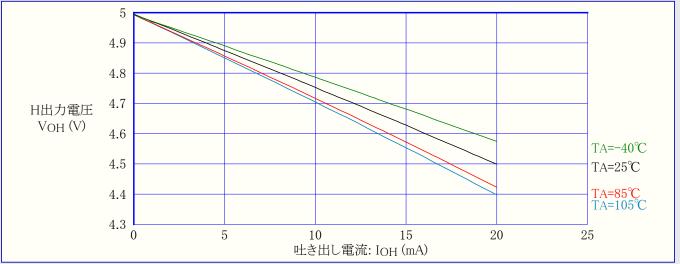


図2-19. RESETL²ン出力電圧 対 吸い込み電流 (VCC=3V)

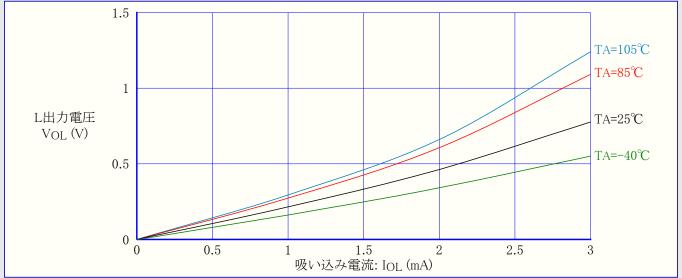
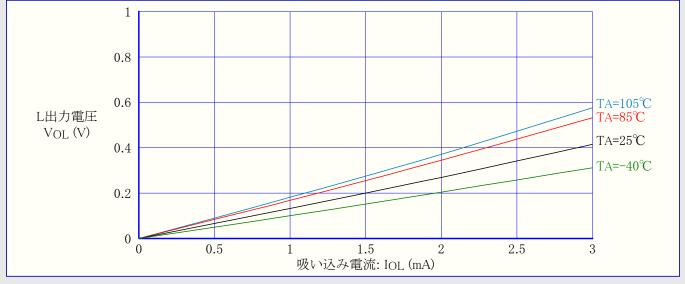
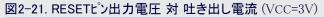
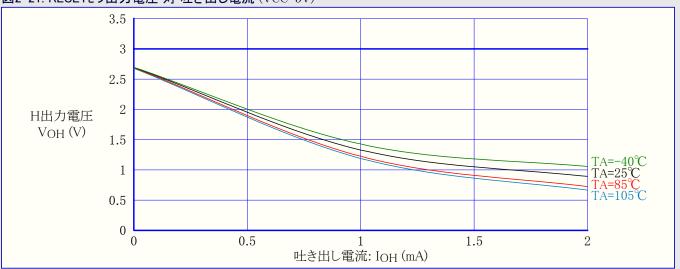
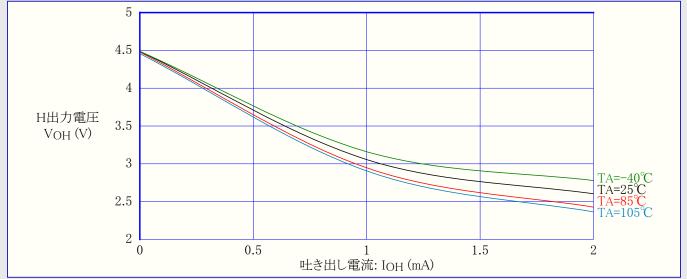
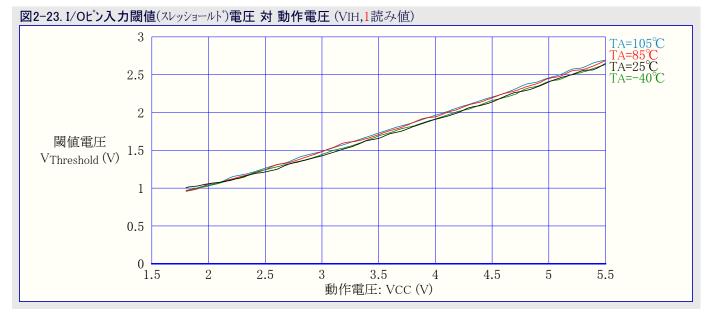
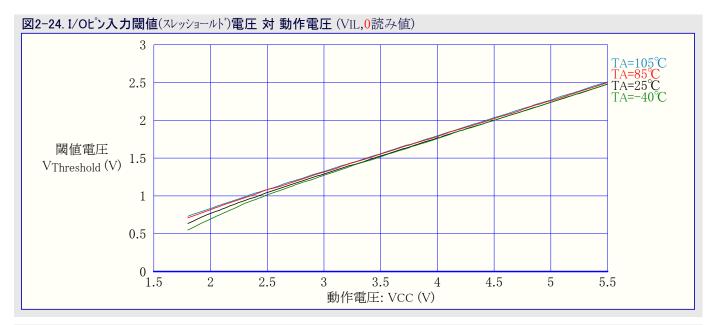
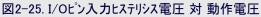




図2-20. RESETピン出力電圧 対 吸い込み電流 (VCC=5V)

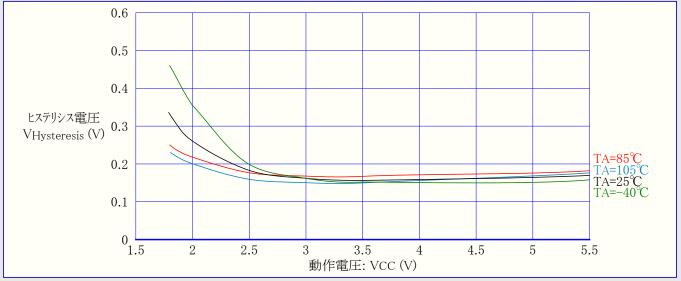
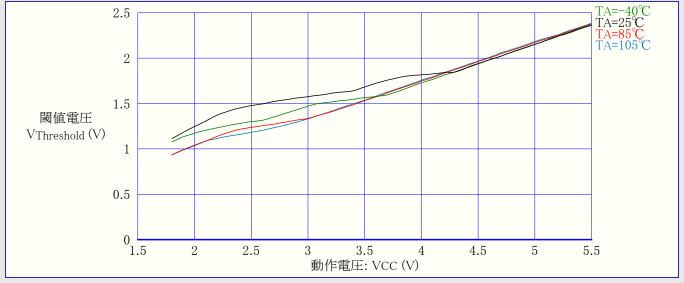
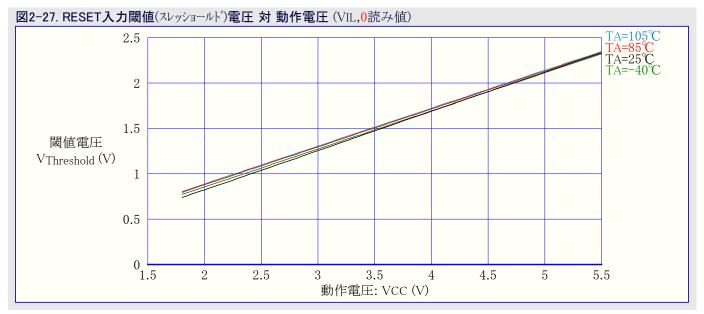




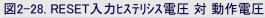

図2-22. RESETピン出力電圧 対 吐き出し電流 (VCC=5V)

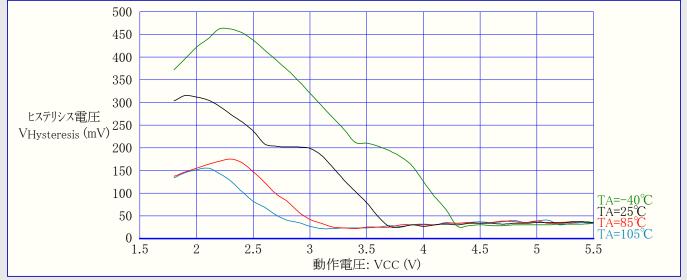


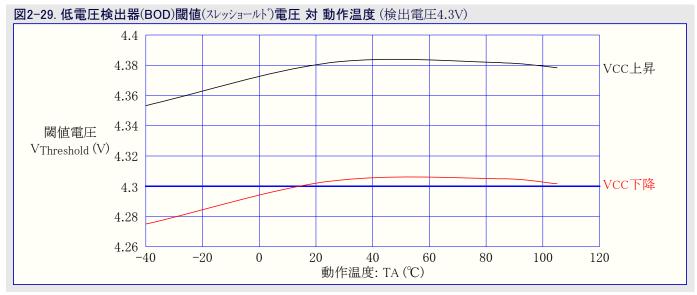
2.6. ピン 閾値とヒステリシス

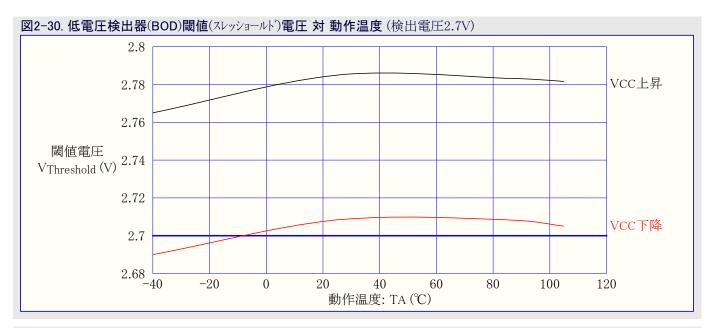
14

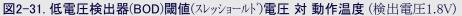




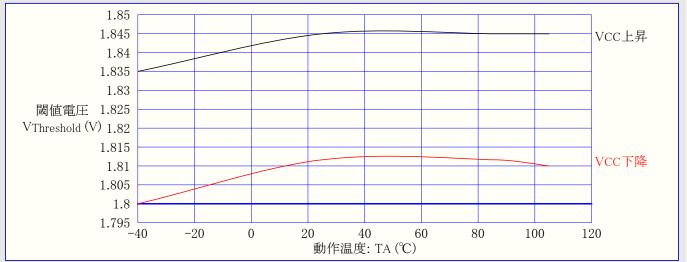

図2-26. RESET入力閾値(スレッショールト)電圧対動作電圧(VIH,1読み値)

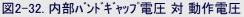


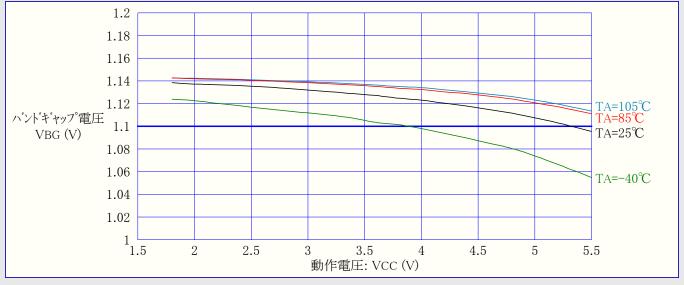


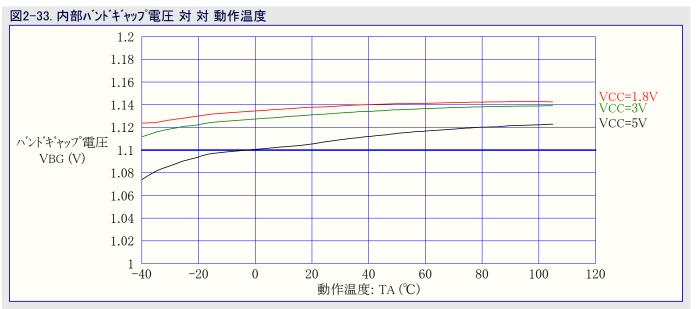


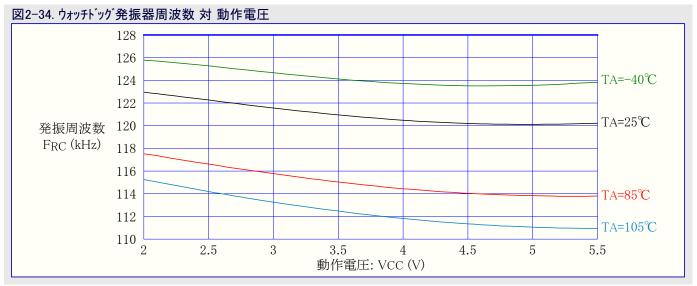


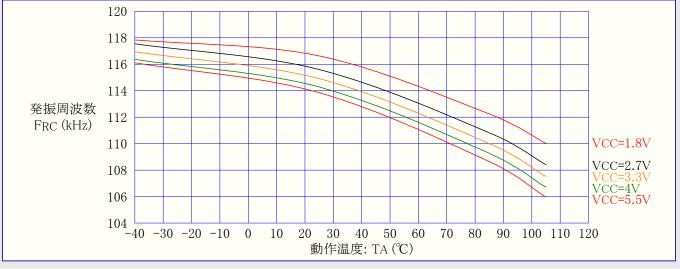

2.7. 低電圧検出器(BOD)閾値

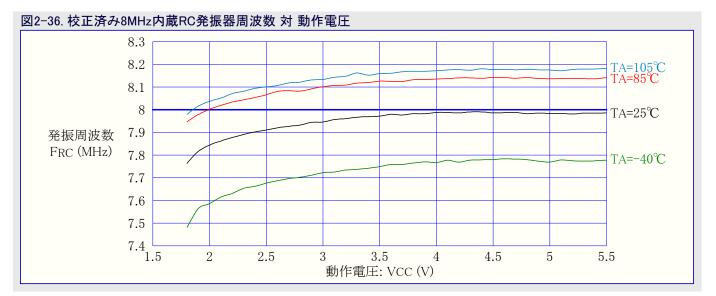



16

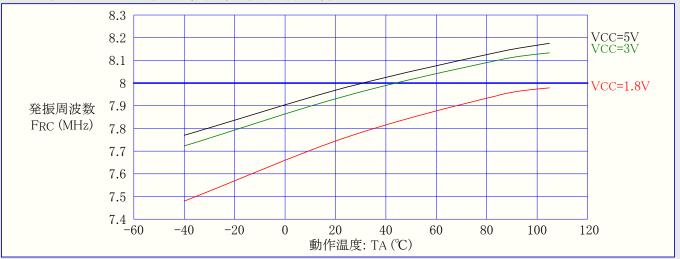


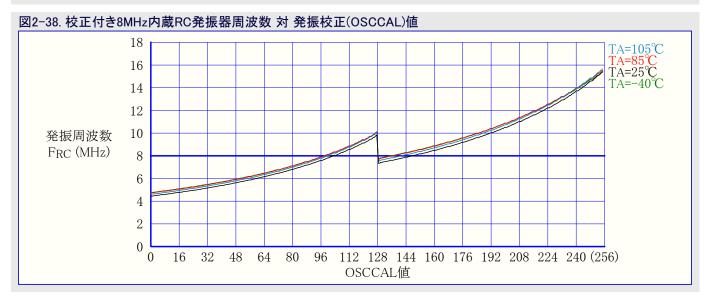


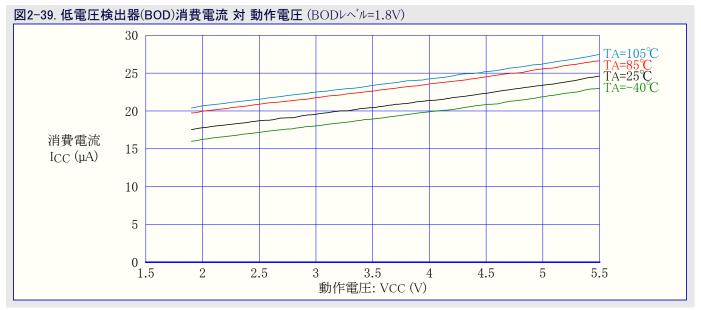


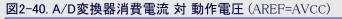


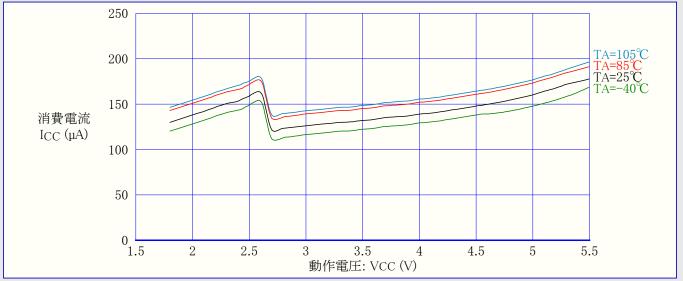
2.8. 内部発振器周波数



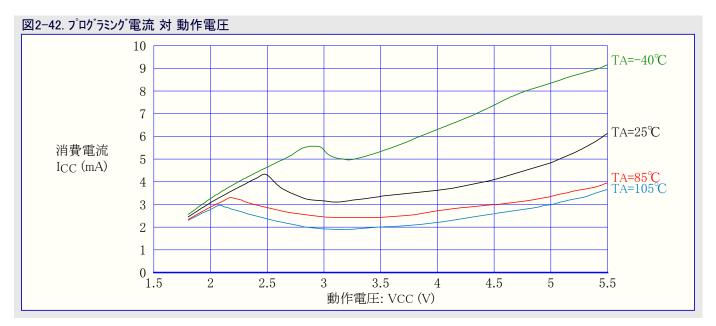

図2-35. ウォッチトック 発振器周波数 対 動作温度







2.9. 周辺機能部消費電流



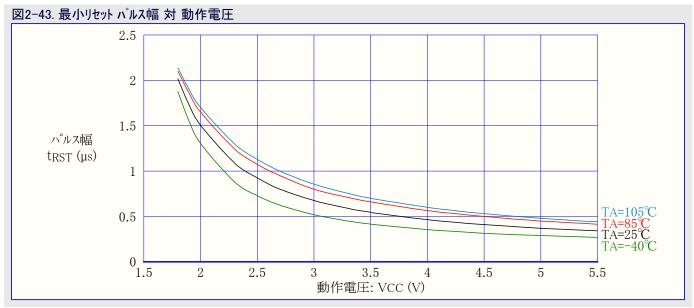


図2-41. アナログ比較器消費電流 対 動作電圧

2.10. リセット消費電流とリセット パルス幅

3. 注文情報

デバイス	速度(MHz)	電源電圧	注文コード (<mark>注</mark> 1)	外囲器 (<mark>注2</mark>)	動作範囲			
		1.8~5.5V	ATtiny25V-10SN	8S2				
	10		ATtiny25V-10SNR	032				
	10		ATtiny25V-10SSN	COC 1	6961	COC 1	COC1	COC 1
A Triper 95			ATtiny25V-10SSNR	S8S1	工業用 (-40℃~105℃)			
ATtiny25			ATtiny25-20SN	8S2	工未用 (-40 C/~103 C)			
	20	$2.7 \sim 5.5 V$	ATtiny25-20SNR	0.52				
	20	2.1 - 0.0 V	ATtiny25-20SSN	S8S1				
			ATtiny25-20SSNR	3031				

注1: 符号識別子は次のとおりです。

•N:半光沢錫。

• R : テープとリール。

注2: 全ての外囲器は鉛フリー、ハロゲン化合物フリーで完全に安全で、これらは有害物質使用制限に関する欧州指令(RoHS指令)に 適合します。

	外囲器形式					
8S2	8リート 200mil幅 プラスティック小型外形外囲器 (EIAJ SOIC)					
S8S1	8リート 150mil幅 プラスティック小型外形外囲器 (JEDEC SOIC)					

4. 改訂履歴

改訂番号	履歴
2586A-追補A-06/10	初版
2586B-追補A-07/10	~SNと~SNR(8S2外囲器)の注文コードを追加
2586N-追補A-08/11	'暫定'状態削除、問い合わせ情報更新

本社

Atmel Corporation 2325 Orchard Parkway

San Jose, CA 95131 USA TEL (+1)(408) 441–0311 FAX (+1)(408) 487–2600

国外営業拠点

Atmel Asia Limited

Unit 01–5 & 16, 19F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG TEL (+852) 2245–6100 FAX (+852) 2722–1369

Atmel Munich GmbH Business Campus

Parking 4 D-85748 Garching b. Munich GERMANY TEL (+49) 89-31970-0 FAX (+49) 89-3194621

Atmel Japan

141-0032 東京都品川区 大崎1-6-4 新大崎勧業ビル 16F アトメル ジャパン株式会社 TEL (+81)(3)-6417-0300 FAX (+81)(3)-6417-0370

製品窓口

ウェブサイト

www.atmel.com

文献請求

www.atmel.com/literature

技術支援 avr@atmel.com 版売窓口 www.atmel.com/contacts

お断り:本資料内の情報はAtmel製品と関連して提供されています。本資料またはAtmel製品の販売と関連して承諾される何れの知 的所有権も禁反言あるいはその逆によって明示的または暗示的に承諾されるものではありません。Atmelのウェブサイトに位置する販売 の条件とAtmelの定義での詳しい説明を除いて、商品性、特定目的に関する適合性、または適法性の暗黙保証に制限せず、Atmel はそれらを含むその製品に関連する暗示的、明示的または法令による如何なる保証も否認し、何ら責任がないと認識します。たと えAtmelがそのような損害賠償の可能性を進言されたとしても、本資料を使用できない、または使用以外で発生する(情報の損失、 事業中断、または利益の損失に関する制限なしの損害賠償を含み)直接、間接、必然、偶然、特別、または付随して起こる如何なる 損害賠償に対しても決してAtmelに責任がないでしょう。Atmelは本資料の内容の正確さまたは完全性に関して断言または保証を行 わず、予告なしでいつでも製品内容と仕様の変更を行う権利を保留します。Atmelはここに含まれた情報を更新することに対してどん な公約も行いません。特に別の方法で提供されなければ、Atmel製品は車載応用に対して適当ではなく、使用されるべきではありま せん。Atmel製品は延命または生命維持を意図した応用での部品としての使用に対して意図、認定、または保証されません。

© Atmel Corporation 2011. 不許複製

Atmel[®]、ロビとそれらの組み合わせ、その他はAtmel Corporationの登録商標または商標またはその付属物です。他の用語と製品名は一般的に他の商標です。

© HERO 2022.

本データシートはAtmelの追補A ATtiny25/V 105℃仕様英語版データシート(改訂2586N-追補A-08/11)の翻訳日本語版です。日本語で は不自然となる重複する形容表現は省略されている場合があります。日本語では難解となる表現は大幅に意訳されている部分もあり ます。必要に応じて一部加筆されています。頁割の変更により、原本より頁数が少なくなっています。

汎用入出力ポートの出力データレジスタとピン入力は、対応関係からの理解の容易さから出力レジスタと入力レジスタで統一表現されています。一部の用語がより適切と思われる名称に変更されています。必要と思われる部分には()内に英語表記や略称などを残す形で表記しています。

青字の部分はリンクとなっています。一般的に赤字の0,1は論理0,1を表します。その他の赤字は重要な部分を表します。 原書に対して若干構成が異なるため、一部の節/項番号が異なります。