特徴

- 高性能、低消費AVR[®] 8ビット マイクロ コントローラ
- 進化したRISC構造
 - ・強力な90命令(多くは1周期で実行)
 - ・32個の1バイト長汎用レジスタ
 - ・完全なスタティック動作
- 不揮発性プログラム用メモリとデータ用メモリ
 - 実装書き換え(ISP)可能なプログラム用1Kハイ仆(512語)フラッシュメモリ内蔵
 ・1000回の書き換えが可能
 - 実装書き換え(ISP)可能な64バイトのEEPROM
 100,000回の書き換えが可能
 - ・ プログラム フラッシュ メモリとデータEEPROM保護用の設定可能な施錠機能

■ 内蔵周辺機能

- ・ピン変化での割り込みと起動復帰
- ・独立した前置分周器付き2つの8ビットタイマ/カウンタ
- ・1つの150kHz高速8ビットPWM出力
- ・4チャネル 10ビット A/D変換器 (任意20倍利得付き、1つの差動電圧入力)
- ・アナログ比較器
- ・設定可能な専用発振器付きウォッチトック、タイマ

■ 特殊マイクロ コントローラ機能

- ・ SPIホート経由実装書き換え(ISP)
- ・増強された電源ONJセット回路
- ・設定可能な低電圧検出(BOD)回路
- ・調整可能な校正付き内蔵RC発振器
- ・タイマ/カウンタ用内蔵25.6MHz発振器
- ・外部及び内部の割り込み
- ・アイドル、A/D変換雑音低減、パワーダウンの3つの低消費動作
- 電気的特長
 - ・高速、低消費なCMOS製法
- 消費電流 (条件: 1.6MHz,3V,25℃)
 - •活動動作 •••••• 3.0mA
 - •アイドル動作 •••••• 1.0mA
 - ・パワーダウン動作・・・・・ 1µA未満

■ I/Oと外囲器

- ・6ビットの設定可能なI/O
- ・8ピンPDIP、8リードSOIC

■ 動作電圧

• 2.7~5.5V

■ 動作速度

・内蔵1.6MHzシステム クロック

本書は一般の方々の便宜のため有志に より作成されたもので、Atmel社とは無関 係であることを御承知ください。しおりの [はじめに]での内容にご注意ください。

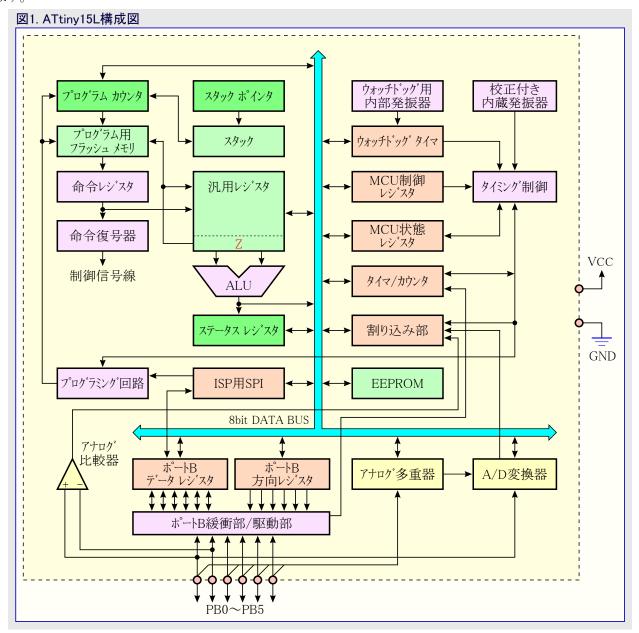
8ビット **AV** [®] マイクロ コントローラ 1 K バイト フラッシュ メモリ内蔵

ATtiny15L

本製品での新規設計は推奨 されません。

Rev. 1187H-09/07, 1187HJ6-01/22

ピン配置 PDIP・SOIC (RESET/ADC0) PB5 (ADC3) PB4 (ADC3) PB4 (ADC2) PB3 (ADC2) PD3 (ADC2) PB3 (ADC2) PC2) (ADC2) PC2) (ADC2) PC2) (ADC2)


概要

ATtiny15LはAVR RISC構造の低消費CMOS 8ビットマイクロコントローラです。1周期で実行する強力な命令は、MHzあたり1MIPSに達し、 実行速度対電力消費の最適化が容易に行えます。

AVRは32個の汎用レジスタと豊富な命令群を兼ね備えています。32個の全レジスタはALU(Arithmetic Logic Unit)に直結され、レジスタ間 命令は1クロック周期で実行されます。AVR構造は現状のCISC型マイクロコントローラに対し、最大10倍の単位処理量向上効果があります。 ATtiny15Lは1Kハ^{*}イトのフラッシュメモリ、64ハ^{*}イトのEEPROM、6本の汎用入出力線、32個の汎用レジスタ、2つの8ビットタイマ/カウンタ(1つは高 速PWM出力付き)、内蔵発振器、内部及び外部割り込み、設定変更可能なウォッチドッグ、タイマ、任意20倍利得付き1つの差動電圧入力 を含む4チャネルの10ビット A/D変換器、ソフトウェアで選択できる3つの低消費動作を提供します。アイト^{*}ル動作では動作を停止しますが、 A/D変換器、アナログ比較器、タイマ/カウンタ、割り込み機能は有効で、動作を継続します。A/D変換雑音低減動作ではCPUを停止し、 ー方A/D変換が機能を継続することにより、高精度のA/D変換測定を容易にします。パワーダウン動作ではレジスタの内容は保護されま すが、発振器が停止するため、以降のハードウェアリセットか外部割り込みまで、他の全機能を無効にします。ピン変化での割り込みまた は起動復帰機能は、低消費電力動作中の最低電力消費の特徴のままで、外部の出来事に対する高い応答性をATtiny15Lで可能 にします。

本デバイスはAtmelの高密度不揮発性メモリ技術を使って製造されています。モノリシックチップ上のフラッシュメモリと、拡張された8ビットRISC型CPUの組み合わせにより、ATtiny15Lは多くの組み込み型制御の応用に高い柔軟性と対費用効果の解決をもたらす強力なマイクロコントローラです。ATtiny15Lの周辺機能は、特に蓄電池充電器、調光器、各種自立型感知器などの応用に最適です。

ATtiny15L AVRはマクロアセンフラ、デ・バッガ、シミュレータ、インサーキットエミューレータ、評価キットを含む完全なプログラム及びシステム開発ツールで支援されます。

ATtiny15

ピン概要

vcc

電源ピン。

GND

接地ピン。

РВ5~РВО (π °-hB)

ポートBは6ビットの入出力ポートです。PB4~0は(ビット単位で選択される)内蔵プルアップ抵抗を供給できるI/Oピンです。PB5は入力または オープントレイン出力です。PB5の使用はヒューズにより定義され、このピンに関連する特殊機能は外部リセットです。リセット条件が活性(有効) になると、例えクロックが動作していなくても、ポートピンはHi-Zにされます。

表1. ポートBピンの交換	表1. ポートBピンの交換機能							
ホ [°] ートΒヒ [°] ン	信号名	意味						
	MOSI	実装書き込み(低電圧直列プログラミング) データ入力						
PB0	AREF	A/D変換器 基準電圧						
	AIN0	アナログ比較器非反転入力						
	MISO	実装書き込み(低電圧直列プログラミング) データ出力						
PB1	OC1A	タイマ/カウンタ1 PWM出力						
	AIN1	アナログ比較器反転入力						
	SCK	実装書き込み(低電圧直列プログラミング) 直列クロック入力						
PB2	INT0	外部割り込み0入力						
FD2	ADC1	A/D変換チャネル1アナログ入力						
	Т0	タイマ/カウンタ0 外部クロック入力						
PB3	ADC2	A/D変換チャネル2アナログ入力						
PB4	ADC3	A/D変換チャネル3アナログ入力						
PB5	RESET	外部リセット入力						
r D0	ADC0	A/D変換チャネル0アナログ入力						

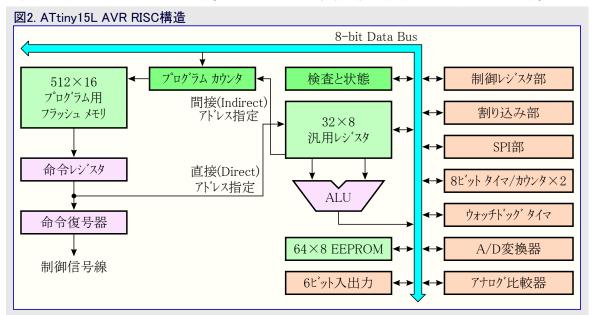
アナログ入力ピン

4つまでのアナロク入力がA/D変換器(ADC)への入力として選択できます。

内蔵発振器

内蔵発振器はシステム クロック(CK)用に名目上1.6MHzのクロック速度を供給します。内蔵発振器の大きな初期偏差(0.8~1.6MHz)のため に調整能力(機能)が備わっています。8ビットの制御レジスタ(発振校正値レジスタ(OSCCAL))を通して、システム クロック速度は公称クロックの 1%級未満に調整できます。

タイマ/カウンタ1周辺の使用に対して、内部PLLがシステム クロック(CK)に固定化される16倍のクロック速度を供給します。この周辺機能クロック (PCK)の公称周波数は25.6MHzです。



構造概要

1クロック周期アクセス時間の高速レジスタファイルには32個の8ビット長汎用レジスタが含まれます。これは1クロック周期中に1つのALU(Arithmeti c Logic Unit)命令が実行されることを意味します。1クロック周期で、2つのオペラントはレジスタファイルから出力され、命令が実行され、その結果がレジスタファイルに書き戻されます。

32個中の2つのレジスタは間接メモリ アクセス用16ビット ポインタとして使えます。このポインタはZポインタ(レジスタ)と呼ばれ、レジスタ ファイルやI/Oレ ジスタとプログラム用フラッシュ メモリをアドレス指定できます。

ALUはレジスタ間、レジスタと定数間の算術及び論理操作を行います。単一レジスタ操作も同様にALUで実行されます。図2.はATtiny15L AVR RISCマイクロコントローラの構造を示します。AVRのメモリとバスはプログラム用とデータ用に各々分離したハーバート、構造で構成されます。 プログラムメモリは2段のパイプラインでアクセスされます。1命令の実行中に、次の命令をプログラムメモリから事前取得します。この概念は全て のクロック周期で命令が実行されるのを可能にします。プログラムメモリは実装書き換え(ISP)可能なフラッシュメモリです。

アドレス空間全てはプログラム カウンタ(PC)相対の無条件分岐(RJMP)命令と呼び出し(RCALL)命令で直接的にアクセスされます。全ての AVR命令は単一の16ビット語形式で、プログラムメモリ内の全てのアドレスが単一の16ビット長命令を含むことを意味します。

割り込みやサブルーチン呼び出しでの戻りアドレスを示すプログラムカウンタ(PC)はスタックに保存されます。このスタックはサブルーチンと割り込み専用の深さ3段のハードウェアスタックです。

I/Oメモリ空間は制御レジスタ、タイマ/カウンタ、その他I/O機能など、CPU周辺機能用の64アドレスを含みます。AVR構造に於けるメモリ空間は全て規則的で直線的なメモリ配置です。

柔軟な割り込み部にはI/O空間の個別の制御レジスタとステータスレジスタ(SREG)の全割り込み許可(I)ビットがあります。各割り込みの全てにはプログラムメモリ先頭の割り込み、、クタ表内に個別の割り込み、、クタがあります。各割り込みは、この割り込み、、クタ表の位置に従った優先順です。下位側割り込み、、クタアト、レスが高い優先順位です。

汎用レジスタファイル

図3.は32個の汎用レジスタの構成を示します。

全てのレジスタに対するレジスタ操作命令はレジスタ直接指定ができ、1周期で アクセスします。SBCI,SUBI,CPI,ANDI,ORIの5つの算術、論理定数演算命 令と、定数をレジスタに設定するLDI命令だけは例外です。これらの命令は レジスタファイル後半のR16~R31に対してだけ適用されます。通常のSBC, SUB,CP,AND,ORや他の全てのレジスタ間、単一レジスタ操作命令はレジスタ ファイルの全レジスタに適用されます。

R30とR31レジスタはフラッシュメモリとレジスタファイルの間接アクセスに使われる16 ビットポインタ(Zレジスタ)を形成します。レジスタファイルがアクセスされるとき、R31 の内容はCPUによって破棄(無視)されます。

図3. AVR CPU	汎用レジスタ構成図
-------------	-----------

	7 0	アドレス
	R0	\$00
	2	
्रत म	R15	\$0F
汎用	R16	\$10
レシブスタ ファイル	2	
	R29	\$1D
	R30	\$1E オンドン オンドン スター下位バイト
	R31	\$1F 2 レッ A7 上位バイト

ALU (Arithmetic Logic Unit)

高性能なAVRのALUは32個全ての汎用レジスタに直接接続され、動作します。レジスタファイル内のレジスタ間ALU操作は、1クロック周期内で実行されます。ALU操作は算術演算、論理演算、ビット操作の3つの主な種類に大別されます。AVR製品系統のいくつかのマイクロコントローラはALUの算術演算部のハートウェア乗算器が特徴です。

プログラム用フラッシュ メモリ

ATtiny15Lにはプログラム保存用に実装書き込み(ISP)可能な1Kハイトのフラッシュメモリが内蔵されています。全ての命令が単一の16ビット /1語(ワード)のため、フラッシュメモリは512×16ビットとして構成されています。フラッシュメモリは少なくても1000回再書き込みの耐久性があり ます。

ATtiny15Lのプログラム カウンタ(PC)は9ビット幅で、プログラム メモリ内の512(語)アドレスを指定します。

フラッシュメモリ書き込みの詳細な記述については37頁をご覧ください。

データ用EEPROMメモリ

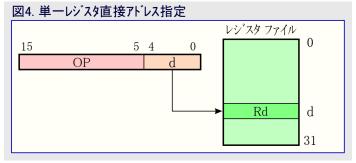
ATtiny15Lにはデータ用に64バイトのEEPROMが内蔵されています。EEPROMは1バイト単位で読み書きができる独立したデータ空間とし て構成されています。EEPROMは100,000回以上の書き換えが可能です。EEPROMとCPU間のアクセスは25頁のEEPROMアトレスレシス タ、EEPROMデータレジスタ、EEPROM制御レジスタの詳細説明で記述されます。

サブルーチン、割り込み用スタック

ATtiny15Lはサブルーチンと割り込み用に深さ3段のハードウェア(固定)スタックを使います。このハードウェアスタックは9ビット幅で、サブルーチンや割り 込み実行中、プログラムカウンタ(PC)の戻りアドレスを格納します。

PC相対呼び出し(RCALL)命令や割り込み時、スタックレベル0にPCの戻りアドレスがプッシュ(格納)され、他のスタックレベル1,2のデータはスタック 内で1段深くなります。RETやRETI命令が実行されると、スタックレベル0から戻りアドレスをPCにポップ(復帰)し、他のスタックレベル1,2のデータ はスタック内で1段浅くなります。

3つを超えるサブルーチンや割り込みが続いて実行されると、スタックに書かれた最初の値が上書きされます。4つの復帰アドレスA1,A2,A3, A4をプッシュし、4つのサブルーチンや割り込みの復帰による結果は、ハードウェアスタックからA4, A3, A2ともう一度A2をポップします。



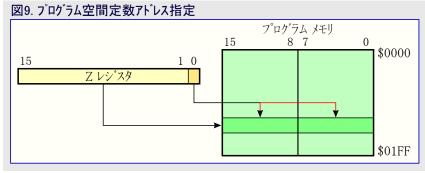
プログラム及びデータ空間に対するアドレス指定種別

ATtiny15L AVR RISCマイクロコントローラは強力で効率的なアトレス指定種別を支援します。本項はATtiny10/11/12で支援される様々な アトレス指定種別を記述します。図内のOPは命令語の動作コート、部を意味します。単純化のため、全ての図がアトレス指定ビットの正確な 位置を示すとは限りません。

単一レジスタ(Rd)直接

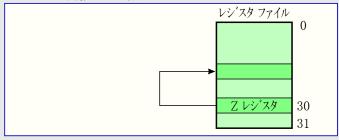
オペラントはレジスタd(Rd)を示します。

レジズタ間(Rd, Rr)直接


オペランドはレジスタr(Rr)と<mark>d(</mark>Rd)を示し、結果はレジスタd(Rd)に格納 されます。

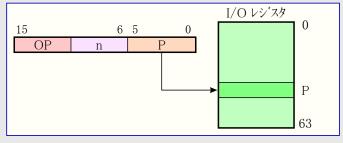
RJMP, RCALL命令によるプログラム相対アドレス指定

図8. プログラム相対アドレス指定



LPM命令による定数アドレス指定

レジスタ間接


図5. レシ、スタ間接アト・レス指定

オペラントはZレジスタ(R30)で示されるレジスタです。

I/O直接

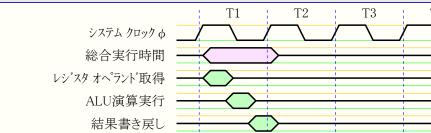
図7. I/O直接アドレス指定

オペラントⁱはI/OアトⁱレスPと、転送元または転送先となるレシⁱスタn (Rn)を示します。

プログラムはPC+k+1のアドレスから継続実行されます。相対値kは符号付きで、-2048~2047です。

ハイト定数のアトレスはZレジスタの内容で示されます。上位15ビットが0~511の語(ワート)アトレスを指示し、最下位ビットがハイト位置を表し、LSB=0で下位ハイト、LSB=1で上位ハイトを示します。

メモリアクセスと命令実行タイミング


本項は命令実行についての一般的なアク セスタイシングの概念を記述します。

AVR CPUは外部クリスタルまたは内蔵RC発 振器で直接的に発生されたシステム クロック φによって駆動されます。内部クロック分周 は使われません。

図10.はハーハート、構造と高速アクセスレジスタ ファイルの概念によって可能となる命令取得 と命令実行の並列動作を示します。これ は機能対費用、対クロック、対電源部での 好結果に相当するMHzあたり1MIPSまで を得る基本的なパイプラインの概念です。

図11.はレジスタファイルに対する内部タイミング の概念を示します。2つのレジスタオペラント を使うALU操作は、転送先レジスタへの結 果書き戻しを含め、単一クロック周期で実行 されます。

図10. 命令の取得と実行の並列動作 ジステム クロック φ 初回命令取得 初回命令取得 第2命令実行/第3命令取得 第3命令実行/第4命令取得 図11. 1周期ALU命令 T1 T2 T3 T4

I/O レジスタ

ATtiny15LのI/O領域定義は表2.に示されます。

表2. ATtiny15L I/Oレジスタ

アドレス	レジスタ略名		レジズタ名称
\$3F	SREG	ステータス レジスタ	Status Register
\$3B	GIMSK	一般割り込み許可レジスタ	General Interrupt MaSK register
\$3A	GIFR	一般割り込み要求フラグレジスタ	General Interrupt Flag register
\$39	TIMSK	タイマ/カウンタ割り込み許可レジスタ	Timer/Counter Interrupt MaSK register
\$38	TIFR	タイマ/カウンタ割り込み要求フラグレジスタ	Timer/Counter Interrupt Flag register
\$35	MCUCR	MCU制御レジスタ	MCU general Control Register
\$34	MCUSR	MCU状態レジスタ	MCU Status Register
\$33	TCCR0	タイマ/カウンタ0 制御レシブスタ	Timer/Counter 0 Control Register
\$32	TCNT0	タイマ/カウンタ0 カウンタ	Timer/CouNTer 0 (8bit)
\$31	OSCCAL	発振器校正レジスタ	Oscillator Calibration Register
\$30	TCCR1	タイマ/カウンタ1 制御レジスタ	Timer/Counter 1 Control Register
\$2F	TCNT1	タイマ/カウンタ1 カウンタ	Timer/CouNTer 1 (8bit)
\$2E	OCR1A	タイマ/カウンタ1 比較A レシブスタ	Timer/Counter 1 Output Compare Register A
\$2D	OCR1B	タイマ/カウンタ1 比較B レシブスタ	Timer/Counter 1 Output Compare Register B
\$2C	SFIOR	特殊I/O機能レジスタ	Special Function I/O Register
\$21	WDTCR	ウォッチドック゛タイマ制御レシ゛スタ	WatchDog Timer Control Register
\$1E	EEAR	EEPROM アトレス レシスタ	EEPROM Address Register
\$1D	EEDR	EEPROM データレシブスタ	EEPROM Data Register
\$1C	EECR	EEPROM 制御レシブスタ	EEPROM Control Register
\$18	PORTB	ポートB 出力データ レジスタ	Data Register, Port B
\$17	DDRB	ポートB 方向レジスタ	Data Direction Register, Port B
\$16	PINB	ポートB 入力データレジスタ	Input Pins, Port B
\$08	ACSR	アナログ比較器制御/状態レジスタ	Analog Comparator Control and Status Register
\$07	ADMUX	A/D変換 多重器選択レジスタ	ADC Multiplexer Select Register
\$06	ADCSR	A/D変換 制御/状態レジスタ	ADC Control and Status Register
\$05	ADCH	A/D変換データレジスタ上位	ADC Data Register High
\$04	ADCL	A/D変換データレジスタ下位	ADC Data Register Low

注:予約と未使用の位置は、この表で示されていません。

ATtiny15Lの全てのI/Oと周辺部はI/O空間に配置されています。各I/O位置は、I/O空間と32個の汎用レジスタ間のデータ移動を行う IN命令とOUT命令によりアクセスされます。アドレス\$00~\$1F範囲内のI/Oレジスタは、SBIとCBI命令を使う直接ビットアクセスが可能です。こ れらのレジスタでは、SBISとSBIC命令の使用により、単一ビット値の検査ができます。より詳細な内容は命令要約を参照してください。将 来のデバイスとの共通性を保つため、予約ビットに書く場合は0を書くべきです。予約済みI/Oアドレスは決して書かれるべきではありません。

I/Oと周辺制御レジスタは次章で説明されます。

■ ステータス レジスタ (Status Register) SREG

AVRのステータスレジスタ(SREG)は、I/O領域の\$3Fで、次のように定義されています。

ヒット	7	6	5	4	3	2	1	0	_
\$3F	Ι	Т	Н	S	V	N	Z	С	SREG
Read/Write	R/W								
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - I: 全割り込み許可 (Global Interrupt Enable)

この全割り込み許可ビットは割り込みを許可する場合、設定(1)しなければなりません。各割り込みの許可は、各制御レジスタで個別に 行います。全割り込み許可ビットが解除(0)されると、個別に割り込みが許可されていても割り込みは発生しません。このビットは割り込 み発生後、自動的に解除(0)され、後続の割り込みを許可するため、割り込み処理のRETI命令によって設定(1)されます。

■ ビット6 - T : ビット変数 (Bit Copy Storage)

このTビットはBLD(Bit LoaD)命令とBST(Bit STore)命令の転送元または転送先として使われます。BLD命令はTをレジスタファイルのレジ スタのビットに複写し、BST命令はレジスタファイルのレジスタからビットをTに複写します。

■ L^{*}ット5 – H : ハーフキャリー フラク^{*} (Half Carry Flag)

このHフラグはいくつかの算術演算命令でのハーフキャリーを示します。ハーフキャリーはBCD演算に有用です。詳細情報については命令要 約を参照してください。

■ ビット4 - S : 符号 (Sign Bit, S= N Ex-OR V)

このS7ラグは常に負(N)フラグと2の補数溢れ(V)フラグの排他的論理和です。詳細情報については命令要約を参照してください。

■ ビット3 - V: 2の補数溢れフラグ(2's Complement Overflow Flag)

この2の補数溢れ(V)フラグは2の補数算術演算を補助します。詳細情報については命令要約を参照してください。

■ ビット2 - N : 負フラク (Negative Flag)

このN7ラグは算術及び論理演算の結果が負であること(MSB=1)を示します。詳細情報については命令要約を参照してください。

■ Ľット1 – Z : ゼロ フラク (Zero Flag)

このZ7ラグは算術及び論理演算の結果がゼロ(0)であることを示します。詳細情報については命令要約を参照してください。

■ Ľット0 – C : キャリー フラク (Carry Flag)

このCフラグは算術及び論理演算でキャリーが発生したことを示します。詳細情報については命令要約を参照してください。

ステータス レジ スタは割り込み処理ルーチン移行時の保存と、割り込み処理ルーチンから復帰時の再設定が、自動的に行われないことに注意してください。これはソフトウェアにより操作しなければなりません。

リセットと割り込みの扱い

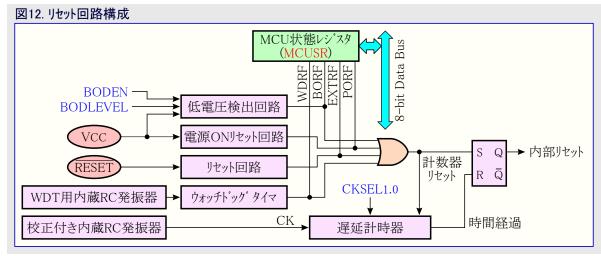
ATtiny15Lには8つの割り込みがあります。これらの割り込みとリセットのヘブクタは、プログラムメモリ空間内に各々個別のヘブクタを持っています。全ての割り込みは、割り込みを許可するために、個別の許可ビットとステータスレジスタ(SREG)の全割り込み許可(I)ビットを設定(1)しなければなりません。

プログラムメモリ空間の最下位アドレスは、リセットと割り込みのベクタとして自動的に定義されています。このベクタの全一覧は**表3**.に示されます。この一覧が各割り込みの優先順位も決めます。下位アドレスがより高い優先順位です。リセットが最高優先順位で、以下、外部割り込み要求0(INT0)の順です。

表3. リセットと割	表3. リセットと割り込みのベクタ									
べりタ番号	プログラム アドレス	発生元	備考							
1	\$000	リセット	電源ONやウォッチドッグ等の各種リセット							
2	\$001	INT0	外部割り込み要求0							
3	\$002	PIN_CHG	I/Oピン レベル変化							
4	\$003	タイマ/カウンタ1 COMPA	タイマ/カウンタ1比較A一致							
5	\$004	タイマ/カウンタ1 OVF1	タイマ/カウンタ1溢れ							
6	\$005	タイマ/カウンタ0 OVF0	タイマ/カウンタの溢れ							
7	\$006	EE_RDY	EEPROM 操作可							
8	\$007	アナログ比較器 ANA_COMP	アナログ比較器出力遷移							
9	\$008	A/D変換器 ADC	A/D変換完了							

ATtiny15Lに於けるリセットと割り込みのヘブタの最も代表的な設定例を次に示します。

アドレス	ラヘル	命令		注釈
\$000		RJMP	RESET	;各種リセット
\$001		RJMP	EXT_INTO	;外部割り込み要求0
\$002		RJMP	PIN_CHG	;I/Oピン レベル変化
\$003		RJMP	TIM1_COMPA	;タイマ/カウンタ1比較A一致
\$004		RJMP	TIM_OVF1	;タイマ/カウンタ1溢れ
\$005		RJMP	TIM_OVFO	;タイマ/カウンタ0溢れ
\$006		RJMP	EE_RDY	;EEPROM 操作可
\$007		RJMP	ANA_COMP	;アナログ比較器出力遷移
\$008		RJMP	ADC	;A/D変換完了
;				
\$009	RESET:	5		;以下、I/O初期化など



リセット発生元

ATtiny15Lには次の4つのリセット発生元があります。

- ・電源ONリセット・・・・・・・・・・・・・電源電圧が電源ONリセット閾値電圧(VPOT)以下でリセットになります。
- ・外部リセット・・・・・・・・・・・・・・・・・・・ RESETピンに500nsを越えるLowレベルが存在すると、リセットになります。
- ・ウォッチト、ック、リセット・・・・・・・・・ウォッチト、ックが許可され、ウォッチト、ック、タイマ周期が経過するとリセットになります。
- ・低電圧検出(BOD)リセット・・・供給電圧(VCC)が低電圧検出電圧(VBOT)以下でリセットになります。

リセット中に、全てのI/Oレジスタは初期値が設定され、その後にアトレス\$0000からプログラム実行が始まります。アトレス\$000に配置される命 令はきっとリセット処理ルーチンへの無条件相対分岐(RJMP)命令でしょう。プログラムで決して割り込みを許可しないならば、割り込み、クタ が使われず、これらの位置に通常のプログラムを配置できます。図12.の回路構成はリセット回路を示します。表4.と表5.はリセット回路の電 気的特性とタイミングを定義します。レジスタファイルがリセットによって変化されないことに注意してください。

表4. リセット電気的特性

シンホール		項目	最小	代表	最大	単位
	上昇時電源ONリセット	BODEN=非プログラム(1)/禁止	1.0	1.4	1.8	
Vpom	閾値電圧	BODEN=プログラム(0)/許可	1.7	2.2	2.7	
V _{POT}	下降時電源ONリセット	BODEN=非プログラム(1)/禁止	0.4	0.6	0.8	
	閾値電圧 (<mark>注1</mark>)	BODEN=プログラム(0)/許可	1.7	2.2	2.7	V
V _{RST}	RESETtピン閾値電圧				0.85VCC	
V _{BOT}	低電圧検出(BOD)	BODLEVEL=非プログラム(1)	2.3	2.7	2.9	
A BO.L	閾値電圧	BODLEVEL=フ゜ロク゛ラム(0)	3.4	4.0	4.3	

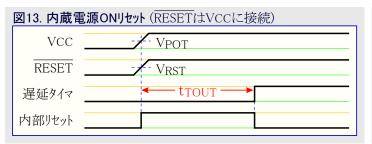
注1:供給電圧がこの電圧以下にならないと、上昇時の電源ONJセットは動作しません。

表5.はリセットからの起動時間を示します。CPUがペワーダウンから起動復帰するときは、この起動(リセット遅延)時間のCK計数部だけが使われます。起動時間の実時間部のタイミングについてはウォッチドッグ発振器が使われます。この実時間に対するウォッチドッグ発振器の計数値は表6.で示されます。

44頁の「代表特性」章で示されるように、ウォッチドッグ発振器の周波数は電圧に依存します。このデバイスはCKSEL1,0=00で出荷されます。

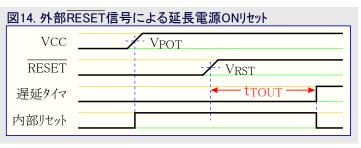
1	表5. CKSELヒュース [*] によるリセット遅延選択(注1)										
	CKSEL1,0	BODEN	リセット遅延時	f間(t _{TOUT})	推奨使用						
	(<mark>注2</mark>)	(<mark>注2</mark>)	VCC=2.7V	VCC=5.0V	推災使用						
	0 0	V	$256 \text{ms} \pm 18 \times \text{CK}$	$64 \text{ms} \pm 18 \times \text{CK}$	BOD=1、低速上昇電源						
	01	Х	А	$250 \text{ms} \pm 10 \wedge \text{CK}$	04 m s \pm 10 \wedge C K	DOD-1、低迷工升电际					
	10	Х	$16 \mathrm{ms} + 18 \times \mathrm{CK}$	$4ms + 18 \times CK$	BOD=1、高速上昇電源						
	1 1	1	$32 \mu s + 18 \times CK$	$8\mu s$ $+$ 18 \times CK	BOD=1(低電圧リセット禁止)						
	11	0	$128 \mu s$ $+$ $18 \times CK$	$32 \mu s + 18 \times CK$	BOD= <mark>0</mark> (低電圧リセット許可)						

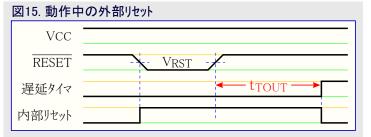
表6. ウォ	表6. ウォッチドック`発振器の周期数							
VCC	१४१२値	周期数						
	32µs	8						
2.7V	128µs	32						
2.(V	16ms	4K						
	256ms	64K						
	8µs	8						
5V	32µs	32						
57	4ms	4K						
	64ms	64K						


注1: 電源投入でのリセット遅延時間は0.6ms(代表値)増加されます。

注2: 0はプログラム、1は非プログラムを意味します。

電源ONリセット

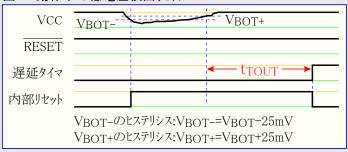

電源ONリセット(POR)パルスは内蔵検出回路によって生成されます。この検出電圧は名目上、表4.で定義されます。PORはVCCが検出 電圧以下で必ず有効にされます。このPOR回路は供給電圧低下の検出だけでなく開始時のリセット起動にも使われます。


電源ONリセット回路は電源投入時のデバイスリセットを保証します。電源ONリセット閾値電圧(VPOT)への到達は、VCC上昇後、デバイスがリ セットを保持する遅延を決める遅延タイマ(カウンタ)を起動します。遅延タイマの計時完了時間はCKSELヒューズを通して定義できます。遅延 時間の各選択は表5.で示されます。VCCが検出電圧以下に低下するとき、リセット信号は何れの遅延もなく、再び活性化(有効に)され ます。

外部リセット

外部リセットはRESETピン上のLowレヘルによって生成されます。例え クロックが動いていなくても、500nsより長いリセット パルスはリセットを生 成します。短すぎるパルスはリセットが保証されません。供給された 信号の上昇が、リセット閾値電圧(VRST)に達すると、遅延タイマは遅 延時間(trout)経過後にMCUを起動します。

低電圧(ブラウンアウト)検出リセット


ATtiny15Lには動作中のVCC電圧を監視する内蔵低電圧検出 (BOD)回路があります。BOD回路はBODENヒューズによって許可/ 禁止ができます。BODENが許可(BODEN=プ[°]ログラム(0))され、VCC が検出電圧以下の値に低下すると、低電圧検出リセットは直ちに 有効とされます。VCCが検出電圧以上に上昇すると、遅延後に無 効とされます。この遅延はPOR信号の遅延(表5.参照)と同じ方法 で使用者によって定義されます。BOD検出電圧はBODLEVEL ヒューズにより、2.7V(非プ[°]ログラム(1))、または4.0V(プ[°]ログラム(0))が選 択できます。この検出電圧には、スハ[°]イク無効の低電圧検出を保証 するために50mVのヒステリシスがあります。

このBOD回路は電圧が4.0Vで3µs、2.7Vで7µs(代表値)より長く検 出電圧以下に留まった場合だけ、VCCの低下を検出します。

ウォッチト ック リセット

ウォッチト`ック`時間経過で1CK周期幅の短いリセット パルスを生成しま す。このパルスの下降端で遅延タイマは遅延時間(t_{TOUT})の計時を 始めます。ウォッチト`ック`操作の詳細については24頁を参照してくだ さい。

図16. 動作中の低電圧検出リセット

図17. 動作中のウォッチト^{*}ック^{*} リセット VCC RESET ウォッチト^{*}ック^{*} 時間経過 遅延タイマ 内部リセット

■ MCU状態レジスタ (MCU Status Register) MCUSR

MCU状態レジスタはどのリセット元でMCUリセットが起こされたかの情報を提供します。

ヒット	7	6	5	4	3	2	1	0	
\$34	-	-	-	-	WDRF	BORF	EXTRF	PORF	MCUSR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	内容参照	内容参照	内容参照	内容参照	

■ ビット7~4 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読まれます。

■ ビット3 – WDRF : ウォッチト ック リセット フラク (Watchdog Reset Flag)

本ビットはウォッチトック^{*}リセットが起こると設定(1)されます。このビットは電源ONリセットか、このフラク^{*}への論理0書き込みによってリセット(0)されます。

■ ビット2 - BORF : 低電圧検出(BOD)リセット フラク (Brown-out Reset Flag)

本ビットは低電圧検出(BOD)リセットが起こると設定(1)されます。このビットは電源ONリセットか、このフラグへの論理0書き込みによってリセット (0)されます。

■ ビット1 - EXTRF : 外部リセット フラク (External Reset Flag)

本ビットは外部リセットが起こると設定(1)されます。このビットは電源ONリセットか、このフラグへの論理0書き込みによってリセット(0)されます。

■ ビット0 – PORF : 電源ONリセット フラク (Power-on Reset Flag)

本ビットは電源ONリセットによって設定(1)されます。このビットは、このフラグへの論理0書き込みによってリセット(0)されます。

リセット条件の確認に、これらのビットを使うため、プログラム内で出来るだけ早くMCUSRを読み、その後に解除(0)すべきです。他のリセットが起こる前に、このレジスタ(MCUSR)が解除(0)される場合、そのリセット元はこれらのリセットフラグを調べることにより得られます。

内部基準電圧

ATtiny15Lの特徴として公称1.22Vの内部基準電圧があります。この内部基準電圧は低電圧検出(ブラウンアウト検出)に使われれ、A/D 変換器やアナログ比較器の入力にも使えます。A/D変換器への2.56V基準電圧は内部基準電圧から生成されます。

基準電圧許可信号と起動時間

この基準電圧には使用方法に影響を及ぼす起動時間が存在します。最大起動時間は10µsです。電力削減のため、この基準電圧は常にONではありません。この基準電圧は次の状況中ONです。

- ・低電圧検出リセット許可(BODENヒューズ=プログラム(0))時
- ・アナログ比較器基準電圧接続(アナログ比較器制御/状態レジスタ(ACSR)の基準電圧入力選択(ACBG)=1)時
- ・A/D変換動作許可(A/D変換制御/状態レジスタ(ADCSR)のA/D動作許可(ADEN)=1)時

従って、低電圧検出(BOD)が許可されていないと、ACBGの設定(=1)後、常にアナログ比較器出力が使われる前に基準電圧を起動させなければなりません(安定時間が必要)。内部基準電圧は定常的に10µAを消費し、パワーダウン動作での低消費のため、パワーダウン動作へ移行する前に内部基準電圧がOFFに切り替えられるのを保証することで、上記3つの状態を無効にできます。

割り込みの扱い

ATtiny15Lには一般割り込み許可レジスタ(GIMSK)とタイマ/カウンタ割り込み許可レジスタ(TIMSK)の2つの8ビット割り込み許可レジスタがあります。

割り込みが起こると、ステータスレシ、スタ(SREG)の全割り込み許可(I)ビットが解除(0)され、全ての割り込みが禁止されます。ソフトウェアは多重 割り込みを許可するために、全割り込み許可(I)ビットを設定(1)できます。この全割り込み許可(I)ビットは、割り込みからの復帰(RETI)命 令が実行されると設定(1)されます。

割り込み処理ルーチンを実行するために、プログラム カウンタが実際の割り込み、、クタを指示するとき、割り込みを起こした対応する割り込み 要求フラグを自動的に解除(0)します。いくつかの割り込み要求フラグは、そのフラグのビット位置に論理1を書くことによっても解除(0)でき ます。

対応する割り込み許可ビットが解除(0)されているときに割り込み条件が発生すると、対応する割り込み要求フラグが設定(1)され、その割り込みが許可または、ソフトウェアで解除(0)されるまで保持されます。

全割り込み許可(I)ビットが解除(0)されているときに1つまたは多くの割り込み条件が発生すると、対応する割り込み要求フラグが設定(1)され、全割り込み許可(I)ビットが設定(1)されるまで保持されます。許可後、それらは優先順に実行されます。

外部レベル割り込みには割り込み要求フラグがなく、割り込み条件が有効でありさえすれば割り込み要求が保持されるだけなことに注意してください。

ステータスレジ、スタ(SREG)は割り込み処理ルーチンへの移行時の保存と割り込み処理ルーチンからの復帰時の再設定が自動的に行われないことに注意してください。これはソフトウェアによって操作しなければなりません。

割り込み応答時間

全ての許可された割り込みについての割り込み実行応答時間は最小4クロックです。割り込み要求フラケが設定(1)されてしまった後の4ク ロック周期で、実際の割り込み処理ルーチン用の割り込み、クタアドレスが実行されます。この4クロック周期期間中、プログラムカウンタ(9ビット)が スタック上に保存(プッシュ)されます。通常、この、クタは割り込み処理ルーチンに対する無条件相対分岐(RJMP)命令で、この分岐に2クロック 周期かかります。複数周期の命令実行中に割り込みが起こると、割り込みが扱われる前に、その命令が完了されます。MCUが休止 形態のときに割り込みが起こると、割り込み応答時間が4クロック周期増やされます。

割り込み処理ルーチンからの復帰は4クロック周期要します。この4クロック周期中に、スタックからプログラム カウンタ(9ビット)が回復(ホップ)され、ス テータスレジスタ(SREG)の全割り込み許可(I)ビットが設定(1)されます。割り込みを抜けるときは常に主(元)プログラムへ復帰し、保留されて いる割り込みが扱われる前に、1つ以上の命令を実行します。

外部割り込み

外部割り込みはINT0ピンによって起動されます。許可されていれば、INT0ピンが出力として設定されていても、割り込みが起動することに注目してください。この特徴はソフトウェア割り込みを生成する方法を提供します。外部割り込みは上昇端、下降端、ピン変化(両端)、またはLowレヘルで起動できます。これはMCU制御レジスタ(MCUCR)についての詳細で説明されるように設定します。外部割り込みが許可され、レヘル起動として設定されるとき、ピンがLowに保持されている限り、この割り込みは継続的に発生します。

外部割り込みは、MCU制御レジスタ(MCUCR)についての詳細で説明されるように設定します。

ピン変化割り込み

ピン変化割り込みは入力または入出力ピンのどれかの何れかの変化により起動されます。PB4~0ピンの変化は常に割り込みを起こしま す。PB5ピンの変化は、3頁の「ピン概要」項で記載されるように、そのピンが入力または入出力に設定される場合に割り込みを起こしま す。許可されていれば、変化するピンが例え出力として設定されていても、起動することに注目してください。この特徴はソフトウェア割り 込みを生成する方法を提供します。ピンの動きが他の割り込み、例えば外部割り込みを起動する場合でも、ピン変化割り込みが起動 することにも注目してください。これは1つの外部要因が複数の割り込みを起こせることを意味します。ピンの値はエッジ検出に先立って 採取されています。ピン変化割り込みが許可されていれば、1CPU/ロック周期よりも長く留まるパルスは割り込みを発生します。短すぎる パルスは割り込みの発生が保証されません。

■ 一般割り込み許可レジスタ (General Interrupt Mask Register) GIMSK

ヒット	7	6	5	4	3	2	1	0	_
\$3B	-	INT0	PCIE	-	-	-	-	-	GIMSK
Read/Write	R	R/W	R/W	R	R	R	R	R	
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ ビット6 - INTO: 外部割り込み0許可 (External Interrupt Request 0 Enable)

ステータスレジスタ(SREG)の全割り込み許可(I)ビットと外部割り込み0許可(INT0)ビットが、共に設定(1)でINT0ピンの割り込みが許可されます。MCU制御レジスタ(MCUCR)の割り込み条件制御0のビット1と0(ISC01,ISC00)が、外部割り込みINT0ピンの動作を上昇端、下降端、 ピン変化(両端)、またはLowレベルの何れか定義します。INT0ピンが出力に設定されていても、このピンの動きは割り込み要求を起こしま す。対応する外部割り込み0の割り込みはプログラムメモリアトレス\$001から実行されます。「外部割り込み」もご覧ください。

■ ビット5 - PCIE : ピン変化割り込み許可 (Pin Change Interrupt Enable)

ステータスレジ[゙]スタ(SREG)の全割り込み許可(I)ビットとピン変化割り込み許可(PCIE)ビットがM共に設定(1)でピン変化割り込みが許可されま す。入力または入出力ピンのどれかの何れかの変化が割り込みを起こします。対応するピン変化割り込み要求の割り込みはプロ グラム メモリ アドレス\$002から実行されます。「**ピン変化割り込み**」もご覧ください。

■ ビット4~0 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ 一般割り込み要求フラグレジスタ (General Interrupt Flag Register) GIFR

ヒット	7	6	5	4	3	2	1	0	_
\$3A	-	INTF0	PCIF	-	-	-	-	-	GIFR
Read/Write	R	R/W	R/W	R	R	R	R	R	
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ ビット6 - INTF0 : 外部割り込み0要求フラグ (External Interrupt Flag0)

INT0ビン上のエッシ'が割り込み要求を起こす時に対応する割り込み要求7ラク'(INTF0)が設定(1)になります。この時にステータスレジスタ (SREG)の全割り込み許可(I)ビットと対応する一般割り込み許可レジスタ(GIMSK)の外部割り込み0許可(INT0)ビットが共に設定(1)されて いれば、MCUはアトレス\$001の割り込み、クタへ飛びます。このフラグは割り込み処理ルーチンが実行されると、解除(0)されます。このフラグ は論理1を書くことによっても解除(0)できます。INT0がレヘル割り込みとして設定されるとき、このフラグは常に解除(0)されます。

■ ビット5 - PCIF : ピン変化割り込み要求フラグ(Pin Change Interrupt Flag)

入力または入出力ピンのどれかの出来事が割り込み要求を起こす時にピン変化割り込み要求(PCIF)フラグが設定(1)になります。この時にステータスレジスタ(SREG)の全割り込み許可(1)ビットと一般割り込み許可レジスタ(GIMSK)のピン変化割り込み許可(PCIE)ビットが共に設定(1)されていれば、アドレス\$002の割り込み、グタへ飛びます。このフラグは割り込み処理ルーチンが実行されると、解除(0)されます。このフラグは論理1を書くことによっても解除(0)できます。

■ ビット4~0 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ タイマ/カウンタ割り込み許可レジスタ (Timer/Counter Interrupt Mask Register) TIMSK

ビット	7	6	5	4	3	2	1	0	_
\$39	-	OCIE1A	-	-	-	TOIE1	TOIE0	_	TIMSK
Read/Write	R	R/W	R	R	R	R/W	R/W	R	
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ ビット6 - OCIE1A:比較一致割り込み許可 (Timer/Counter1 Output Compare Interrupt Enable)

ステータスレジスタ(SREG)の全割り込み許可(I)ビットと比較一致割り込み許可(OCIE1A)ビットが共に設定(1)で、タイマ/カウンタ1の比較一致割り込みが許可されます。タイマ/カウンタ1で比較A一致が起こる、換言すると、タイマ/カウンタ割り込み要求フラグレジスタ(TIFR)の比較一致割り込み要求フラグ(OCF1A)が設定(1)されると、対応する割り込み(ベクタ \$003)が実行されます。

■ ビット5~3 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ ビット2 - TOIE1 : タイマ/カウンタ1溢れ割り込み許可 (Timer/Counter1 Overflow Interrupt Enable)

ステータスレジスタ(SREG)の全割り込み許可(I)ビットとタイマ/カウンタ1溢れ割り込み許可(TOIE1)ビットが共に設定(1)で、タイマ/カウンタ1溢れ割り 込みが許可されます。タイマ/カウンタ1溢れが起こる、換言すると、タイマ/カウンタ割り込み要求フラク・レジスタ(TIFR)のタイマ/カウンタ1溢れ割り 込み要求フラグ(TOV1)が設定(1)されると、対応する割り込み(ヘウタ \$004)が実行されます。

■ ビット1 - TOIE0: タイマ/カウンタ0溢れ割り込み許可 (Timer/Counter0 Overflow Interrupt Enable)

ステータスレジネタ(SREG)の全割り込み許可(I)ビットとタイマ/カウンタ0溢れ割り込み許可(TOIE0)ビットが共に設定(1)で、タイマ/カウンタ0溢れ割り 込みが許可されます。タイマ/カウンタ0溢れが起こる、換言すると、タイマ/カウンタ割り込み要求フラク・レジネタ(TIFR)のタイマ/カウンタ0溢れ割り 込み要求フラグ(TOV0)が設定(1)されると、対応する割り込み(ヘウタ \$005)が実行されます。

■ ビット0 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ タイマ/カウンタ割り込み要求フラク レジスタ (Timer/Counter Interrupt Flag Register) TIFR

ヒット	7	6	5	4	3	2	1	0	_
\$38	-	OCF1A	-	-	-	TOV1	TOV0	-] TIFR
Read/Write	R	R/W	R	R	R	R/W	R/W	R	
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ ビット6 - OCF1A:比較一致割り込み要求フラウ (Output Compare Interrupt Flag1)

タイマ/カウンタ1と比較Aレシ、スタ(OCR1A)の値間で比較一致が起こると、OCF1Aが設定(1)されます。対応する割り込み処理へクタを実行すると、OCF1は自動的に解除(0)されます。代わりに、このフラグへ論理1を書くことによってもOCF1は解除(0)されます。ステータスレジスタ(SREG)の全割り込み許可(I)ビットとタイマ/カウンタ割り込み許可レジ、スタ(TIMSK)の比較一致割り込み許可(OCIE1A)ビットとOCF1が設定(1)されると、比較一致割り込みが実行されます。

■ ビット5~3 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ ビット2 - TOV1 : タイマ/カウンタ1溢れ割り込み要求フラク (Timer/Counter1 Overflow Interrupt Flag)

タイマ/カウンタ1溢れが起こると、TOV1ビットが設定(1)されます。対応する割り込み処理、クタを実行すると、TOV1は自動的に解除(0)されます。代わりに、このフラグへ論理1を書くことによってもTOV1は解除(0)されます。ステータスレジスタ(SREG)の全割り込み許可(I)ビットとタイマ/カウンタ割り込み許可レジスタ(TIMSK)のタイマ/カウンタ1溢れ割り込み許可(TOIE1)ビットとTOV1が設定(1)されると、タイマ/カウンタ1溢れ割り込みが実行されます。

■ ビット1 - TOV0: タイマ/カウンタの溢れ割り込み要求フラク (Timer/Counter0 Overflow Interrupt Flag)

タイマ/カウンタの溢れが起こると、TOV0ビットが設定(1)されます。対応する割り込み処理、クタを実行すると、TOV0は自動的に解除(0)されます。 代わりに、このフラグへ論理1を書くことによってもTOV0は解除(0)されます。 ステータス レジスタ(SREG)の全割り込み許可(I)ビットとタイマ/カウンタ割り込み許可レジスタ(TIMSK)のタイマ/カウンタの溢れ割り込み許可(TOIE0)ビットとTOV0が設定(1)されると、タイマ/カウンタの溢れ割り込みが実行されます。

■ ビット0 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ MCU制御レジスタ (MCU Control Register) MCUCR

このMCU制御レジスタは、一般的なMCU機能の制御ビットが含まれます。

ビット	7	6	5	4	3	2	1	0	_
\$35	-	PUD	SE	SM1	SM0	-	ISC01	ISC00	MCUCR
Read/Write	R	R/W	R/W	R/W	R/W	R	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ ビット6 - PUD : プルアッフ[°]禁止 (Pull-up Disable)

ポートBの内蔵プルアップ抵抗を禁止するには、このPUDビットが設定(1)されなければなりません。

■ ビット5 - SE:休止許可 (Sleep Enable)

SLEEP命令が実行されるときにMCUを休止形態へ移行させるには、休止許可(SE)ビットが設定(1)されなければなりません。MCUの目 的外休止形態移行を防ぐため、SLEEP命令実行直前に休止許可(SE)ビットを設定(1)することが推奨されます。

■ ビット4.3 - SM1.0:休止種別 (Sleep Mode Select Bits 1 and 0)

これらのビットは表7.で示される利用可能な3つの休止形態の1つを選択しま 表7.休止形態種別選択 す。

詳細については次の「休止形態」を参照してください。

SM1	SM0	休止形態種別
0	0	アイトル動作
0	1	A/D変換雑音低減動作
1	0	パワーダウン動作
1	1	(予約)

■ ビット2 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ ビット1,0 - ISC01,0: 外部割り込み0条件制御 (Interrupt Sense Control 0 bit1 and 0)

外部割り込み0はステータスレジズタ(SREG)の全割り込み許可(I)ビットと一般割り 込み許可レシブスタ(GIMSK)の外部割り込み0許可(INT0)ビットの設定(1)によって 活性(有効)にされます。割り込みを活性化(起動)する外部INT0ピン上の動き は表8.で定義されます。

注: ISC01,00ビットを変更するとき、INT0はGIMSKの割り込み許可ビットの解除 (0)により、禁止されなければなりません。さもなければ、これらのビットが変 更されると、割り込みが起き得ます。

表8. 外部割り込み0(INT0)割り込み	条件
-----------------------	----

ISC01	ISC00	割り込み発生条件
0	0	INT0ピンがLowレヘルで発生。
0	1	INT0ピンのレヘル変化(両端)。
1	0	INT0ピンの下降端で発生。
1	1	INTOピンの上昇端で発生。

休止形態

3つの休止形態の何れかへ移行するには、MCU制御レジスタ(MCUCR)の休止許可(SE)ビットが設定(1)され、SLEEP命令が実行されなければなりません。MCUCRの休止種別(SM1,SM0)ビットが選択するどれかの休止形態(アイトル、A/D変換雑音低減、パワーダウン)が、SLEEP命令により有効動作にされます(表7.参照)。MCUが休止形態中に許可されている割り込みが発生すると、MCUは起動復帰します。MCUは4周期停止後、その割り込み処理ルーチンを実行し、そしてSLEEP命令の次から実行を再開します。ピン変化でのパワーダウン動作からの復帰では、ピン変化割り込み要求フラグ(PCIF)が更新される前に2命令周期が実行されます。デバイスが休止形態から起動するとき、レジスタファイル、I/Oレジスタの内容は変化しません。休止形態中にリセットが起こると、MCUは起動復帰し、リセット ヘクタから実行します。

アイドル動作

休止種別(SM1,SM0)ビットが00に設定されている時のSLEEP命令でMCUがアイドル動作へ移行して、CPUは停止しますが、アナログ比較器、A/D変換、タイマ/カウンタ、ウォッチトック「、割り込み機構は継続して動作します。これはウォッチトック「リセットやタイマ溢れのような内部割り込みだけでなく、外部で起動される割り込みからもMCUの起動復帰を可能にします。A/D変換が許可されている場合、この動作が開始されると自動的に変換が始まります。アナログ比較器割り込みからの起動復帰が必要とされない場合、アナログ比較器制御/状態レジスタ(ACSR)のアナログ比較器禁止(ACD)ビットを設定(1)することより、アナログ比較器を電源断にできます。これはアイドル動作での電力消費を削減します。

A/D変換雑音低減動作

休止種別(SM1,SM0)ビットが01に設定されている時のSLEEP命令でMCUがA/D変換雑音低減動作に移行し、CPUは停止しますが、 A/D変換、外部割り込みピン、ピン変化割り込みピン、ウォッチトッグ機能は(許可されていれば)継続して動作します。PLLを含むクロックシス テムがA/D変換雑音低減動作でも活動(動作)することに注意してください。これはA/D変換の雑音環境を改善し、高分解能の測定を 可能にします。A/D変換が許可されていれば、この動作が開始されると、自動的に変換が始まります。ウォッチトッグ時間経過、低電圧 検出(BOD)、外部リセットに加え、外部レベル起動割り込み、ピン変化割り込み、A/D変換完了割り込みだけが、A/D変換雑音低減動作 からMCUを起動復帰できます。

パワーダウン動作

休止種別(SM1,SM0)ビットが10に設定されている時のSLEEP命令でMCUがパワーダウン動作へ移行します。外部リセット、(許可されていれば)ウォッチドッグリセットや低電圧検出(BOD)リセット、外部レベル起動割り込み、ピン変化割り込みだけがMCUを起動復帰できます。

ハプーダウン動作からの復帰にレヘルで起動された割り込みまたはピン変化割り込みが使われる場合、MCUを起動するため、変更された レヘルは一定時間保持されなければなりません。これはMCUの雑音不安定性を減らします。変更されたレヘルはウォッチトッグ用発振器ク ロックにより2度採取され、この入力がこの時間中、必要とされるレヘルであれば、MCUは起動復帰します。ウォッチトッグ用発振器の周期 は公称2.9µs(3.0V,25℃)です。「代表特性」章内で示されるように、ウォッチトッグ用発振器の周波数は電圧に依存します。

パワーダウン動作から復帰するとき、起動復帰条件発生から起動復帰の効果が現れるまで遅延を伴います。これは停止されてしまっている後に、再開のためのクロックが許可され、安定状態になるためです。この起動時間はリセット遅延時間を定義するCKSELヒューズにより同じく定義されます。

校正付き内蔵RC発振器

この内蔵RC発振器は1.6MHz(5V,25℃での公称値)固定のクロックを供給します。この内部クロックは常にATtiny15Lのシステムクロックです。 この発振器は発振校正レジスタ (OSCCAL)への校正値(37頁参照)書き込みによって校正できます。

ヒット	7	6	5	4	3	2	1	0	_
\$31	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	OSCCAL
Read/Write	R/W								
初期値	0	0	0	0	0	0	0	0	

■ 発振校正レジスタ (Oscillator Calibration Register) OSCCAL

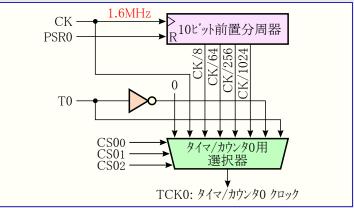
発振周波数の偏差による処理を省くため、このアドレスへの校正バイト書き込みが内蔵RC発振器を調整します。OSCCALが0の時に利用可能な最低周波数が選択されます。このレジスタへの0以外の値書き込みが内蔵RC発振器周波数を増加します。このレジスタへの \$FF書き込みが利用可能最高周波数を選択します。

高速周辺機能クロック生成用内部PLL

ATtiny15Lの内部PLLはRC発振器システム クロックから16倍されたクロック周波数を生成します。このRC発振器周波数が公称1.6MHzならば、高速周辺機能クロックは25.6MHzです。高速周辺機能クロック、またはそれから分周されたクロックはタイマ/カウンタ1のクロック元として選択できます。

このPLLは調整可能な内蔵RC発振器にロックされ、発振校正レジスタ(OSCCAL)経由の調整可能な内蔵RC発振器の調節は、同時に 高速周辺機能クロックを調節します。内蔵RC発振器が1.75MHzを越えて調節されると、タイマ/カウンタ1が機能しないかもしれません。 全チップ機能の正しい動作を維持するため、1.75MHzより高い周波数へOSCAL補正を行うことは推奨されません。

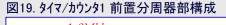
タイマ/カウンタ

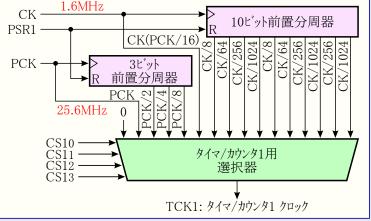

ATtiny15Lには2つ汎用8ビットタイマ/カウンタがあります。タイマ/カウンタには独自の10ビット前置分周器からの独自分周選択があります。タイマ/カウンタ0は基準時間クロックとして内部クロック(CK)を使います。タイマ/カウンタ1は基準時間クロックとして内部クロック(CK)か、高速周辺機能クロック(PCK)のどちらかが使えます。

タイマ/カウンタ0 前置分周器

図18.はタイマ/カウンタ0の前置分周器を示します。

4つの前置分周された選択はCKを発振器クロックとするCK/8, CK/64, CK/256, CK/1024です。CK、外部クロック信号、停止 もクロック元として選択できます。特殊I/O機能レジスタ(SFIOR) のタイマ/カウンタ0前置分周器リセット(PSR0)ビットの設定(1)は、こ の前置分周器をリセットします。これは予測可能な前置分周器 操作を可能にします。


図18. タイマ/カウンタ0 前置分周器部構成



タイマ/カウンタ1 前置分周器

図19.はタイマ/カウンタ1の前置分周器を示します。

タイマ/カウンタ1のクロック選択は、PCK, PCK/2, PCK/4, PCK/8. CK(PCK/16), CK/2, CK/4, CK/8, CK/16, CK/32, CK/64, CK/128, CK/256, CK/512, CK/1024と停止です。 このクロック種別選択は、タイマ/カウンタ1制御レジスタ(TCCR1)と21 頁の表11.で記述されます。特殊I/O機能レジスタ(SFIOR)のタ イマ/カウンタ1前置分周器リセット(PSR1)ビットの設定(1)は、この10 ビット前置分周器をリセットします。これは予測可能な前置分周 器操作を可能にします。

■ 特殊I/O機能レジスタ (Special Function I/O Register) SFIOR

ヒット	7	6	5	4	3	2	1	0	_
\$2C	-	-	-	-	-	FOC1A	PSR1	PSR0	SFIOR
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ビット7~3 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ ビット3 - FOC1A: OC1A比較出力強制変更 (Force Output Compare 1A)

このビットへの論理1書き込みは、既に設定された比較1A出力制御(COM1A1,COM1A0)ビットの値に従って、比較一致出力ピンOC1A (PB1)を強制的に変更します。比較出力強制ビットはタイマ/カウンタの比較一致を待たずに出力ピンを変更するために使えます。比較一 致が発生した場合と同様にCOM1A1とCOM1A0で設定された自動動作が起きますが、割り込みは発生せず、例え一致解除(CTC1) ビットが設定(1)されていてもタイマ/カウンタは解除されません。FOC1Aビットは常に0として読めます。PWM動作でのFOC1Aビット設定は無 効です。

■ ビット1 - PSR1: タイマ/カウンタ1 前置分周器リセット (Prescaler Reset Timer/Counter1)

このビットが設定(1)されると、タイマ/カウンタ1の前置分周器はリセットします。このビットはその動作が実行された後、自動的に解除(0)されます。このビットへの0書き込みは無効です。このビットは常に0として読めます。

■ ビット0 - PSR0 : タイマ/カウンタ0 前置分周器リセット (Prescaler Reset Timer/Counter0)

このビットが設定(1)されると、タイマ/カウンタ0の前置分周器はリセットします。このビットはその動作が実行された後、自動的に解除(0)されます。このビットへの0書き込みは無効です。このビットは常に0として読めます。

ATtiny15

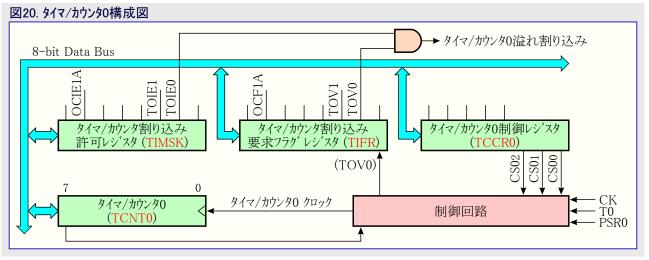

8ビット タイマ/カウンタ0

図20.はタイマ/カウンタ0の構成図を示します。

8ビットのタイマ/カウンタ0はCK、分周されたCK、または外部ビンからクロック元を選択できます。加えて「タイマ/カウンタ0制御レジスタ(TCCR0)」の 詳細で記述されるように停止もできます。溢れ状態フラク(TOV0)は「タイマ/カウンタ割り込み要求フラケレジスタ(TIFR)」にあります。制御ビット はタイマ/カウンタ0制御レジスタ(TCCR0)にあります。タイマ/カウンタ0に関する割り込みの許可/禁止設定は「タイマ/カウンタ割り込み許可レジスタ (TIMSK)」にあります。

タイマ/カウンタ0が外部的にクロック駆動されるとき、外部信号はCPUの発振器周波数で同期化されます。外部クロックの正しい採取を保証 するには、外部クロックの2つの変移間の最小時間が、少なくても1つの内部CPUクロック周期以上でなければなりません。この外部クロック 信号は内部CPUクロックの上昇端で採取されます。

8ビットのタイマ/カウンタ0は低前置分周(使用)機会での高分解能及び高精度の使用が特徴です。同様に高前置分周(使用)機会は低速な目的やまれに動く正確なタイミングの目的についてタイマ/カウンタ0を有効にします。

■ タイマ/カウンタ0制御レジスタ (Timer/Counter0 Control Register) TCCR0

ビット	7	6	5	4	3	2	1	0	_
\$33	-	-	-	-	-	CS02	CS01	CS00	TCCR0
Read/Write	R	R	R	R	R	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ビット7~3 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ ビット2~0 - CS02~0: クロック選択0 (Clock Select0, bit 2,1 and 0)

クロック選択0ビット2~0はタイマ/カウンタ0に供給するク ロック元を定義します。

停止状態はタイマ/カウンタの許可/禁止機能を提供 します。前置分周されたCK種別では、発振器ク ロック(CK)から直接的に分周されます。タイマ/カウン タのに外部ピン種別が使われると、例えTO(PB2)が 出力として設定されていても、このピン上の変移 がタイマ/カウンタをクロック駆動します。この特徴が計 数動作のソフトウェア制御を提供します。

表9. タイマ/カ	ウンタの人力	クロック選択	
CS02	CS01	CS00	意味
0	0	0	停止(タイマ/カウンタ0は動作停止)
0	0	1	СК
0	1	0	CK/8 (CPUクロックを8分周したクロック)
0	1	1	CK/64 (CPUクロックを64分周したクロック)
1	0	0	CK/256 (CPUクロックを256分周したクロック)
1	0	1	CK/1024 (CPUクロックを1024分周したクロック)
1	1	0	外部T0(PB2)ピンの下降端
1	1	1	外部T0(PB2)ピンの上昇端

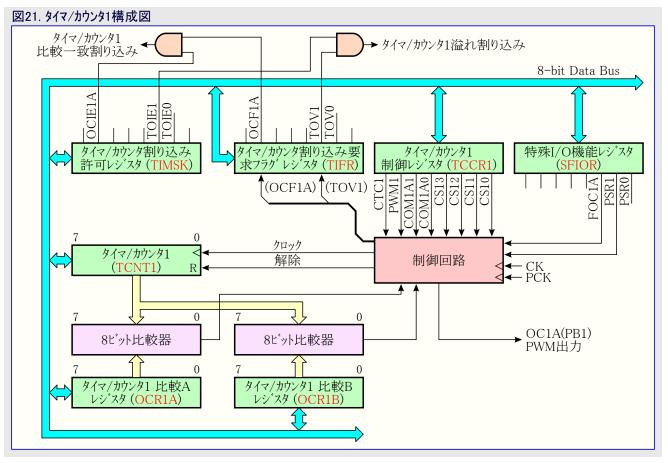
■ タイマ/カウンタ0 (Timer/Counter0) TCNT0

ビット	7	6	5	4	3	2	1	0	_
\$32	(MSB)							(LSB)	TCNT0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

このタイマ/カウンタ0は、読み書きできる上昇カウンタとして実装されます。タイマ/カウンタ0が書かれ、クロック元が存在すると、タイマ/カウンタ0は書き込み動作の次に来るタイマ/カウンタクロック周期で計数を開始/継続します。

8ビット タイマ/カウンタ1

この単位部は低前置分周(使用)機会での高分解能及び高精度の使用が特徴です。タイマ/カウンタ1は25.6MHzまでのクロック速度を使う 正確な高速8ビットパルス幅変調器(PWM)としても使えます。この動作でのタイマ/カウンタ1と比較レジスタは自立型PWMとして取り扱います。 この機能の詳細な記述については22頁を参照してください。同様に高前置分周(使用)機会は低速な目的やまれに動く正確なタイシン グの目的についてこの単位部を有効にします。


図21.はタイマ/カウンタ1の構成図を示します。

2つの状態フラグ(溢れ:TOV1,比較一致:OCF1A)はタイマ/カウンタ割り込み要求フラグレジスタ(TIFR)にあります。制御信号(ビット)はタイマ/カウ ンタ1制御レジスタ(TCCR1)にあります。割り込みの許可/禁止設定はタイマ/カウンタ割り込み許可レジスタ(TIMSK)内にあります。

タイマ/カウンタ1はタイマ/カウンタ1の内容と比較されるデータ元として2つの比較レジスタ(OCR1AとOCR1B)を含みます。標準動作での比較出 力機能は操作上、比較機能は比較Aレジスタ(OCR1A)だけで、任意の比較A一致でのカウンタの解除(=\$00)や、比較出力OC1A (PB1)と。 ン上の動作を含みます。

PWM動作での比較Aレジスタ(OCR1A)はタイマ/カウンタ1が比較される対象のデータ値を供給します。この比較一致でPWM出力が生成されます。PWM動作ではタイマ/カウンタが比較Bレジスタ(OCR1B)で指定された値まで計数し、そして再び\$00から始めます。この機能はカウンタ上限値を\$FF未満の指定値に制限させます。けれどもOCR1xが\$00の場合、出力は一定に留まり、全てに於いて(1/0の)切り替わりがありません。OCR1xが\$01と等しいなら、パルス幅は2計数分で、OCR1xが\$01より大きい場合に直線的に増加します。多くの前置分周種別と共に柔軟なPWM周波数選択が提供されます。表14.は10kHz単位での10kHz~150kHzのPWM周波数を得るための、クロック選択とOCR1B値の一覧を示します。

可変PWMでの応用ではPWMの微調整のためにデューティ比(OCR比較値)を倍にし、前置分周設定を半分にしての使用ができます。 代わりに反転PWMも使えます。

■ タイマ/カウンタ1制御レジスタ (Timer/Counter1 Control Register) TCCR1

ビット	7	6	5	4	3	2	1	0	_
\$30	CTC1	PWM1	COM1A1	COM1A0	CS13	CS12	CS11	CS10	TCCR1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - CTC1 : 一致解除許可 (Clear Timer/Counter1 on Compare Match)

CTC1制御ビットが設定(1)されると、タイマ/カウンタ1は比較Aレジスタ(OCR1A)値との比較一致後のCPUクロック周期で\$00にリセットされます。 この制御ビットが解除(0)されると、タイマ/カウンタ1は比較一致による影響を受けず、計数動作を続けます。

■ ビット6 - PWM1 : PWM動作許可 (Pulse Width Modulator Enable)

設定(1)されると、このビットはタイマ/カウンタ1のPWM動作を許可します。この動作は22頁で記述されます。

■ ビット5,4 - COM1A1,0:比較出力選択 (Compare Output Mode bit 1 and 0)

このCOM1A1とCOM1A0制御ビットはタイマ/カウンタ1(TCNT1)での比較A一致に続く、何れかの出力ピン動作を決めます。出力ピン動作は OC1A(PB1)ピンに影響を及ぼします。これはI/Oポートの交換機能で、出力ピンを制御するためには、対応する方向制御ビットが設定(1) されなければなりません(DDB1=1)。制御設定は表10.に示されます。

注: PWM動作でのこれらのビットは違う機能を持ちます。詳細説明については表12.を参照してください。COM1A1/COM1A0ビットを変更するとき、比較一致割り込みはタイマ/カウンタ割り込み許可レジスタ(TIMSK)でその割り込み許可ビットの解除(0)によって、禁止されなければなりません。さもなければ、これらのビットが変更されるとき、割り込みが起き得ます。

表10. 比較出	表10. 比較出力選択										
COM1A1	COM1A0	意味									
0	0	OC1A切断									
0	1	OC1Aピントグル(交互)出力									
1	0	OC1Aピン Lowレベル出力									
1	1	OC1Aピン Highレヘッル出力									

■ ビット3~0 - CS13~0: クロック選択1 (Clock Select1, bit 3,2,1 and 0)

このクロック選択1ビット3~0はタイマ/カウンタ1(TCNT1)に 供給するクロックを定義します。

停止状態はタイマ/カウンタの動作許可/禁止機能を提供します。CKが分周される動作では発振器クロック、 CKから直接的に分周されます。

表11.91	表11. タイマ/カウンタ1入力クロック選択											
CS13	CS12	CS11	CS10	意味								
0	0	0	0	停止(タイマ/カウンタ1は動作を停止します)								
0	0	0	1	CK×16 (PCK)								
0	0	1	0	CK×8 (PCK/2)								
0	0	1	1	CK×4 (PCK/4)								
0	1	0	0	CK×2 (PCK/8)								
0	1	0	1	CK (システム クロック)								
0	1	1	0	CK/2								
0	1	1	1	CK/4								
1	0	0	0	CK/8								
1	0	0	1	СК/16								
1	0	1	0	CK/32								
1	0	1	1	CK/64								
1	1	0	0	CK/128								
1	1	0	1	CK/256								
1	1	1	0	CK/512								
1	1	1	1	СК/1024								

■ タイマ/カウンタ1 (Timer/Counter1) TCNT1

ビット	7	6	5	4	3	2	1	0	_
\$2F	(MSB)							(LSB)	TCNT1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

この8ビットレジスタはタイマ/カウンタ1の値を含みます。

タイマ/カウンタ1は、読み書き可能な上昇カウンタとして実装されます。CPUとタイマ/カウンタ1の同期化のため、タイマ/カウンタ1に書かれた値は 1CPUクロック周期遅らされます。

■ タイマ/カウンタ1 比較Aレジスタ (Timer/Counter1 Output Compare Register A) OCR1A

ビット	7	6	5	4	3	2	1	0	_
\$2E	(MSB)							(LSB)	OCR1A
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

比較Aレジスタ(OCR1A)は読み書き可能な8ビットのレジスタです。

このタイマ/カウンタ比較レジスタ(OCR1A)は、タイマ/カウンタ1(TCNT1)と継続的に比較されるべきデータを保持します。比較一致での動作はタ イマ/カウンタ制御レジスタ(TCCR1)で詳細に記されます。比較一致はタイマ/カウンタ1がOCR1A値を計数する場合にだけ起きます。TCNT1と OCR1Aを同じ値に設定する、ソフトウェア書き込みでは比較一致を発生しません。次のタイマ/カウンタクロック周期での比較一致を妨げま す。これはタイマ/カウンタ初期化時、即時の割り込みを防止します。

比較一致は比較での出来事に続くCPUクロック周期で比較一致割り込み要求フラグ(OCF1A)を設定(1)します。

■ タイマ/カウンタ1 比較Bレジスタ (Timer/Counter1 Output Compare Register B) OCR1B

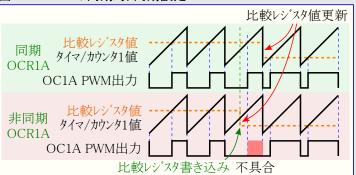
ビット	7	6	5	4	3	2	1	0	_
\$2D	(MSB)							(LSB)	OCR1B
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	1	1	1	1	1	1	1	1	

比較Bレジスタ(OCR1B)は読み書き可能な8ビットのレジスタです。このレジスタはPWM動作だけで使われ、タイマ/カウンタ1(TCNT1)が計数を 維持するための上限値を制限します。TCNT1がPWM動作でOCR1Bへ到達後、タイマ/カウンタは\$00から開始します。

タイマ/カウンタ1 PWM動作

PWM動作が選択されると、タイマ/カウンタ1(TCNT1)と比較Aレシ、スタ(OCR1A)は自由走行動作で不具合のない8ビットPWMとOC1A(PB1) ビン出力を形成します。タイマ/カウンタ1は上昇カウンタとして動作し、\$00から比較Bレシ、スタ(OCR1B)で指定された値まで上昇計数して、そし て再び\$00から上昇を始めます。タイマ/カウンタ1(TCNT1)値が比較Aレシ、スタ(OCR1A)の内容と一致すると、タイマ/カウンタ1制御レシ、スタ(TCC R1)の比較出力選択(COM1A1,COM1A0)の指定に従って、OC1A(PB1)ビンが設定(High)または解除(Low)されます。詳細については **表12**.を参照してください。

表12. PWM出	長12. PWM出力選択 (比較出力選択と兼用)										
COM1A1	COM1A0	OC1A(PB1)出力									
0	0	OC1A出力切断 (PB1は標準I/Oとして動作)									
0	1	OCIA山刀切肉((FDI)は標準I/OCU (動作)									
1	0	OCR1Aとの一致で解除(Low)、OCR1Bとの一致(TCNT1=\$00)で設定(High) [非反転出力]									
1	1	OCR1Bとの一致(TCNT1=\$00)で解除(Low)、OCR1Aとの一致で設定(High) [反転出力]									


PWM動作での比較Aレシ、スタ(OCR1A)書き込みはデータ値が最初に一時領域へ転送されることに注意してください。その値はタイマ/カウンタがOCR1Bに到達する時にOCR1A内へラッチ(設定)されます。これはOCR1A非同期書き込みでの奇数長PWMハ[°]ルス(不具合)の発生を防止します。この例については図22.を参照してください。

書き込みと実際の設定間の期間中、比較レジスタからの読み込みは一時領域の内容が読まれます。これは常に最も最近書かれた値がOCR1Aの読み出しとなることを意味します。

比較Aレシⁱスタ(OCR1A)が\$00またはOCR1Bで指定される上限値 のとき、OC1A(PB1)出力はCOM1A1/COM1A0の設定に従って HighまたはLowに保持されます。これは**表13**.で示されます。

PWM動作でのタイマ/カウンタ1溢れ(TOV1)フラグは標準タイマ/カウンタ動作として設定(1)されます。タイマ/カウンタ1溢れ割り込みは通常動作、換言するとステータスレジスタ(SREG)の 全割り込み許可(I)ビットとタイマ/カウンタ割り込み許可レジスタ(TIMSK)のタイマ/カウンタ1溢れ 割り込み許可(TOIE1)ビットが許可されていれば、TOV1が設定(1)される時に割り込 みが実行されるように正しく動作します。これは比較一致割り込み(OCF1A)フラグと割 り込みについても適用されます。

図22. OCR1Aの同期/非同期設定

表13. 上限値、下限値でのPWM出力

COM1A1	COM1A0	OCR1A	OC1A出力
1	0	\$00	L
1	0	OCR1B	Н
1	1	\$00	Н
1	1	OCR1B	L

ATtiny15

PWM周波数はタイマ/カウンタ1(TCNT1)のクロック周波数÷(OCR1B+1)です。

表14. 代表的なPWM周波数設定例

PWM周波数	PWM周期	OCR1B	TCNT1クロック	備考
10kHz	100.00µs	159	СК	
20kHz	50.00µs	159	PCK/8	
30kHz	33.33µs	213	PCK/4	
40kHz	25.00µs	159	FCK/4	
50kHz	20.00µs	255		
60kHz	16.67µs	213		
70kHz	14.29µs	181	PCK/2	
80kHz	12.50µs	159		
90kHz	11.11µs	141		
100kHz	10.00µs	255		
110kHz	9.09µs	231		
120kHz	8.33µs	213	PCK	
130kHz	7.69µs	195	FUK	
140kHz	7.14µs	181		
150kHz	6.67µs	169		

非反転PWM出力の正確なデューティ比は次式で示されます。

デューディ比= $\frac{(\text{OCR1A}+1) \times T_{TI} - T_{PCK}}{(\text{OCR1B}+1) \times T_{TI}}$

T_{T1}:選択されたタイマ/カウンタ1のクロック周期 *T_{PCK}*:PCKクロック周期(39.1ns)

ウォッチト゛ック゛ タイマ

このウォッチドッグタイマは1MHzで動作する独立した内蔵発振器から駆動されます。これはVCC=5Vでの代表値です。他の電源電圧での代表値については44頁の「代表特性」をご覧ください。表15.で示されるように、ウォッチドッグタイマの前置分周器を制御することによってウォッチドッグリセット周期は16~2048msに調整できます。ウォッチドッグリセット(WDR)命令は、ウォッチドッグタイマをリセットします。8種類の異なるクロック周期は、リセット周期を決めるために選択できます。WDR命令なしで、このリセット周期が経過すると、ATtiny15Lはリセットし、リセットベクタから実行します。ウォッチドッグリセットの詳細タイミングについては11頁を参照してください。

予期せぬウォッチトック「禁止を防止するため、ウォッチト、ック」が禁止される とき、特別なOFF切り替え手順に従わなければなりません。詳細に ついてはウォッチト、ック「タイマ制御レシ、スタの記述を参照してください。

図23. ウォッチドッグ タイマ構成図

■ ウォッチト゛ック゛タイマ制御レシ゛スタ (Watchdog Timer Control Register) WDTCR

ビット	7	6	5	4	3	2	1	0	_
\$21	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	WDTCR
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ビット7~5 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ ビット4 - WDTOE : ウォッチトック 停止移行許可 (Watchdog Turn-off Enable)

ウォッチドッグ許可(WDE)ビットが解除(<mark>0</mark>)されるとき、このビットは設定(1)されなければなりません。さもなければ、ウォッチドッグは禁止されません。一度設定(1)すると、4クロック周期後、ハードウェアがこのビットを0に解除します。ウォッチドッグ禁止手順についてはWDEビットの記述を参照してください。

■ ビット3 - WDE : ウォッチト ック 許可 (Watchdog Enable)

このWDEが設定(1)されるとウォッチドッグ タイマが許可され、解除(0)されるとウォッチドッグ タイマ機能が禁止されます。WDEはウォッチドッグ停止 移行許可(WDTOE)ビットが設定(1)されている場合のみ解除(0)できます。許可されているウォッチドッグ タイマを禁止するには次の手順に 従わなければなりません。

- 1. 同じ操作内で、WDTOEとWDEに論理1を書きます。禁止操作開始前が1に設定されていても、論理1がWDEに書かれなければなりません。
- 2. 次の4クロック以内に、WDEへ論理0を書きます。これがウォッチドッグを禁止します。
- ビット2~0 WDP2~0: ウォッチトック タイマ前置分周選択 (Watchdog Timer Prescaler 2,1 and 0)

このWDP2~0は、ウォッチトックゲタイマが 許可されるときのウォッチトックゲタイマの 前置分周を決めます。各前置分周値 と対応する計時完了周期は表15.に 示されます。

表15. ウォッチトック前置分周選択

WDP2	WDP1	WDP0	WDT発振周期数	代表的な計時完了周期		
WDP2	WDPT	WDPU	WDI光派向别数	VCC=3.0V	VCC=5.0V	
0	0	0	16K	47ms	15ms	
0	0	1	32K	94ms	30ms	
0	1	0	64K	0.19s	60ms	
0	1	1	128K	0.38s	0.12s	
1	0	0	256K	0.75s	0.24s	
1	0	1	512K	1.5s	0.49s	
1	1	0	1024K	3.0s	0.97s	
1	1	1	2048K	6.0s	1.9s	
	は「代表的な		」欄が示されていませ	んが、他のAV	'Rデータシートに	

習い、参考までに転記しました。

EEPROMアクセス

EEPROMをアクセスするレジスタはI/O空間でアクセスできます。

書き込み時間は校正されたRC発振器の周波数に依存し、4.6~8.2msの範囲です。詳細については表16.をご覧ください。(書き込み は)自己タイシグ機能ですが、使用者ソフトウェアは次バイトが書ける時を検知してください。使用者コートがEEPROMに書く命令を含む場合 は、いくつかの予防処置が取られなければなりません。厳重に濾波した電源では、電源投入/切断でVCCが緩やかに上昇または下 降しそうです。これはデバイスが何周期かの時間、使われるクロック周波数に於いて最小として示されるより低い電圧で走行する原因に なります。これらの条件下のCPU動作はプログラム カウンタに予期せぬ分岐を実行させるかもしれず、結果的にEEPROM書き込みコートを 実行する原因になりそうです。この場合、完全にEEPROMを保護するために外部低電圧リセット回路の使用が推奨されます。

不測のEEPROM書き込みを防ぐため、特別な書き込み手順に従わなければなりません。この詳細については「EEPROM制御レジスタ (EECR)」の記述を参照してください。

EEPROMが読み書きされると、CPUは次の命令が実行される前に2クロック周期停止されます。 (訳注)以降のEEWE, EERE記述内では他のデバイス同様、書き込みで2、読み込みで4クロック周期になっています。

■ EEPROM7トレス レジスタ (EEPROM Address Register) EEAR

ビット	7	6	5	4	3	2	1	0	_
\$1E	-	-	EEAR5	EEAR4	EEAR3	EEAR2	EEAR1	EEAR0	EEAR
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	不定	不定	不定	不定	不定	不定	

■ ビット7~6 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ Ľット5~0 - EEAR5~0 : EEPROM7ト レス (EEPROM Address)

EEPROMアドレス レジスタ(EEAR)は64ベイトのEEPROM空間のEEPROMアドレスを指定します。EEPROMデータのベイトは0~63間で直線的 に配置されています。EEARの初期値は不定です。EEPROMがアクセスされる前に適切な値が書かれなければなりません。

■ EEPROMデータ レジズタ (EEPROM Data Register) EEDR

ビット	7	6	5	4	3	2	1	0	
\$1D	(MSB)							(LSB)	EEDR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
初期值	11/ 11	1\/ VV	11/ 11	1\/ VV	IX / VV	Γ(/ VV	$I\chi / VV$	IX / VV	

■ L^{*}ット7~0 - EEDR7~0 : EEPROM - (EEPROM Data)

EEPROM書き込み操作について、EEDRはEEPROMアドレス レジスタ(EEAR)で与えられるアドレスのEEPROMに書かれるデータです。 EEPROM読み込み操作では、EEDRがEEARで与えられるアドレスのEEPROMから読み出されたデータです。

■ EEPROM制御レジスタ (EEPROM Control Register) EECR

ビット	7	6	5	4	3	2	1	0	
\$1C	-	-	-	-	EERIE	EEMWE	EEWE	EERE	EECR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	
初期值	0	0	0	0	0	0	不定	0	

■ ビット7~4 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読めます。

■ ビット3 - EERIE : EEPROM操作可割り込み許可 (EEPROM Ready Interrupt Enable)

ステータスレジ^スタ(SREG)の全割り込み許可(I)ビットとこのEERIEが設定(1)されると、EEPROM操作可割り込みが許可されます。解除(0)されると、この割り込みは禁止されます。EEWEが解除(0)されていると、EEPROM操作可割り込みは継続する割り込みを発生します。

■ ビット2 - EEMWE : EEPROM主書き込み許可 (EEPROM Master Write Enable)

このEEMWEビットは、EEPROM書き込み許可(EEWE)ビットの1設定がEEPROM書き込みの原因となるかどうかを決定します。EEMWE が設定(1)されるとき、EEWEの1設定は選択されたアドレスのEEPROMにデータを書きます。EEMWEが0の場合、EEWEの1設定は無効 です。EEMWEがソフトウェアによって設定(1)されてしまうと、4クロック周期後、自動的に解除(0)されます。EEPROM書き込み手順について は次の「書き込み許可(EEWE)」ビットの記述をご覧ください。

■ ビット1 - EEWE : EEPROM書き込み許可 (EEPROM Write Enable)

このEEPROM書き込み許可信号(EEWE)はEEPROMへの書き込みストローブです。アドレスとデータが適切に設定されると、EEPROMへこ の値を書き込むために、このEEWEビットを設定(1)しなければなりません。論理1がEEWEに書かれるとき、EEPROM主書き込み許可 (EEMWE)ビットは設定(1)されなければならず、そうしないと、EEPROM書き込みは行われません。EEPROMを書く時は次の手順に従う べきです(手順2.と3.の順番は重要ではありません)。

1. EEPROM書き込み許可(EEWE)ビットが0になるまで待機します。

- 2. 今回のEEPROMアドレスをEEPROMアドレス レジスタ(EEAR)に書きます。(任意、省略可)
- 3. 今回のEEPROMデータをEEPROMデータレジスタ(EEDR)に書きます。(任意、省略可)
- 4. EEPROM制御レジスタ(EECR)のEEPROM主書き込み許可(EEMWE)ビットに論理1を書きます。

5. EEMWE設定後4クロック周期内に、EEPROM書き込み許可(EEWE)ビットへ論理1を書きます。

警告: 手順4.と5.間の割り込みは、EEPROM主書き込み許可が時間超過となるため、書き込み周期失敗になります。EEPROMをアクセ スする割り込み処理ルーチンが他のEEPROMアクセスで割り込み、EEARかEEDRが変更されると、割り込まれたEEPROMアクセスが失 敗する原因になります。これらの問題を防ぐため、手順2.~5.の間中、ステータスレジスタ(SREG)の全割り込み許可(I)ビットは解除 (0)されていることが推奨されます。

書き込み時間(代表的には、内蔵RC発振器が1.6MHzに校正された場合、5.1ms)が経過してしまうと、EEWEビットは自動的に解除(0) されます。次のハイトを書く前に、このビットをホーリングしてOまで待機できます。EEWEが設定(1)されてしまうと、次の命令が実行される 前にCPUは2周期停止されます。

■ ビット0 - EERE : EEPROM読み込み許可 (EEPROM Read Enable)

このEEPROM読み込み許可信号(EERE)はEEPROMへの読み込みストローブです。EEARに適切なアドレスが設定されると、このEEREビッ トを設定(1)しなければなりません。EEREビットが自動的に解除(0)されると、求められたデータがEEDR内にあります。EEPROM読み込み アクセスは1命令で行われるので、EEREビットのポーリングは必要ありません。EEREが設定(1)されてしまうと、次の命令が実行される前に CPUは4周期停止されます。

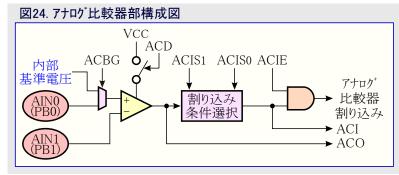
読み込み操作を始める前にEEWEビットをポーリングすべきです。 新規データまたはアドレスがEEPROM I/Oレジスタに書かれるときに書き込 み動作が実行中の場合、書き込み動作は阻止され、結果が不定にされます。

EEPROM書き込みアクセスの時間に校正付き内蔵 表16. 代表的なEEPROM書き込み時間 RC発振器が使われます。表16.の代表的な書き 込み時間はCPUからのEEPROMアクセスについて 示されます。

項目	校正付きRC発振器クロック数	最小	最大
EEPROM書き込み(CPUから)	8192	4.6ms	8.2ms

EEPROMデータ化けの防止

電源電圧が低すぎる時のCPUやEEPROMの動作特性により、低VCCの期間中、EEPROMデータが化けてしまいます。これらはEEPR OMを使った基板レベルの問題と同じで、同じ設計上の解決法が適用されるべきです。


EEPROMデータ化けが発生する低電源電圧は、2つの場合が想定できます。1つ目は、EEPROM書き込み動作に必要な最低電圧以 下の場合で、2つ目は、CPUが命令を実行するのに必要な最低電圧以下の場合です。

次の推奨設計(内の1つで充分)により、EEPROMのデータ化けは容易に避けることができます。

- ・電源の供給電圧が不足する時間中、AVRのRESETを有効(Low)に保ちます。これは動作電圧が検出電圧と一致する場合、内蔵 低電圧検出器(BOD)を許可することにより行えます。一致しない場合、外部低VCCリセット保護回路が適用できます。
- ・低VCCの時間中、AVRコアをパワーダウン休止動作に保ちます。これはCPUを命令の復号と実行を試みないように防ぎ、不測の書き 込みからEEPROMレジスタを保護する効果があります。
- ・ソフトウェアからメモリ内容を変更できることが必要とされない場合、フラッシュメモリに定数を格納します。フラッシュメモリはCPUにより更新さ れることができないので、データ化けの問題はありません。

アナログ比較器

アナログ比較器は非反転入力AIN0(PB0)と反転入力AIN1 (PB1)の入力値を比較します。非反転入力AIN0(PB0)の電 圧が反転入力AIN1(PB1)の電圧より高いと、アナログ比較器 制御/状態レジスタ(ACSR)のアナログ比較器出力(ACO)ビットを 設定(1)します。この比較器出力はアナログ比較器専用の独 立した割り込みを起動できます。比較器出力の上昇端、下 降端、またはその両方での割り込み起動が選べます。この 比較器とその周辺回路の構成図は図24.で示されます。

■ アナログ比較器 制御/状態レジスタ (Analog Comparator Control and Status Register) ACSR

ビット	7	6	5	4	3	2	1	0	_
\$08	ACD	ACBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	ACSR
Read/Write	R/W	R/W	R	R/W	R/W	R	R/W	R/W	
初期値	0	0	不定	0	0	0	0	0	

■ ビット7 - ACD : アナログ比較器禁止 (Analog Comparator Disable)

このビットが設定(1)されると、アナログ比較器への電力がOFFに切り替えられます。このビットはアナログ比較器をOFFにするため、何時でも設定(1)できます。これは活動動作やアイドル動作での消費電力を削減します。ACDビットを変更するとき、ACSRのアナログ比較器割り込み許可(ACIE)ビットを解除(0)することにより、アナログ比較器割り込みが禁止されなければなりません。さもないと、このビットが変更されるとき、割り込みが起きます。

■ ビット6 - ACBG : 内部基準電圧選択 (Analog Comparator Bandgap Select)

このビットが設定(1)されると、比較器非反転入力の標準入力(AIN0)を内部基準電圧1.22±0.05Vに置換します。このビットが解除(0)され ると、標準入力AIN0(PB0)ピンが比較器非反転入力に印加されます。

■ ビット5 - ACO: アナログ比較器出力 (Analog Comparator Output)

ACOは比較器出力へ直接、接続されています。

■ ビット4 - ACI: アナロク 比較器割り込み要求フラク (Analog Comparator Interrupt Flag)

比較器出力の動きがアナログ比較器割り込み条件(ACIS1,ACIS0)ビットで定義された割り込み動作を起こす時にこのビットが設定(1)されます。アナログ比較器割り込み許可(ACIE)ビットが設定(1)され、ステータスレジスタ(SREG)の全割り込み許可(I)ビットが設定(1)されていると、アナログ比較器割り込み処理ルーチンが実行されます。対応する割り込み、グタを実行するとき、ACIは自動的に解除(0)されます。代わりにこのフラグへ論理1を書くことによっても、ACIは解除(0)されます。

■ ビット3 - ACIE: アナログ比較器割り込み許可 (Analog Comparator Interrupt Enable)

ACIEL^{*}ットが設定(1)され、ステータスレシ^{*}スタ(SREG)の全割り込み許可(I)L^{*}ットが設定(1)されると、アナログ比較器割り込みが有効化されます。解除(0)されると、この割り込みは禁止されます。

■ ビット2 - Res : 予約 (Reserved)

このビットは予約されており、常に0として読めます。

■ ビット1,0 - ACIS1,0: アナログ比較器割り込み条件 (Analog Comparator Interrupt Mode Select)

これらのビットはアナログ比較器割り込みを引き起こす出来事を決めます。各設定は表17.に示されます。

表17. アナログ比較器割り込み条件選択

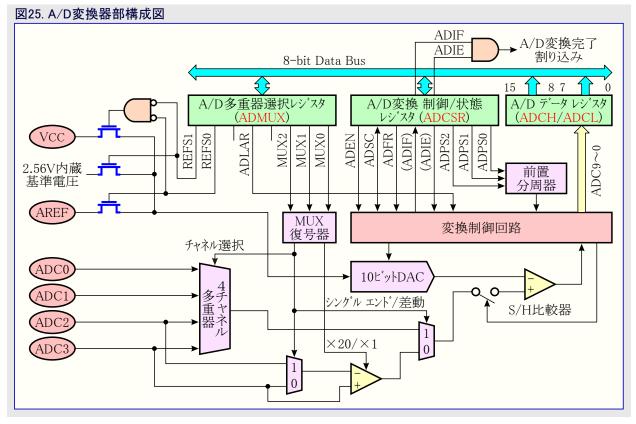
ACIS1	ACIS0	割り込み発生条件
0	0	比較器出力の変移(トグル)
0	1	(予約)
1	0	比較器出力の下降端
1	1	比較器出力の上昇端

注: このACIS1,ACIS0ビットを変更するとき、ACSRのアナログ比較器割り込み許 可(ACIE)ビットを解除(0)することにより、アナログ比較器割り込みが禁止さ れなければなりません。そうでないと、これらのビットが変更されるとき、割 り込みが起きます。

警告: このレジスタのACI以外のビットに対するCBIまたはSBI命令の使用は、ACIが1として読まれる場合に1が書き戻されるため、このフ ラグを解除(0)してしまいます。

(訳注)原書では上記警告が追加されていませんが、他のAVRデータシートに習い、追加しました。

A/D変換器 (アナログ多重器, 利得段)


特徴

- ・10ビット分解能
- ・絶対精度±2LSB
- ・積分非直線性0.5LSB
- ・任意のオフセット相殺処理
- ・変換時間65~260µs
- ・最大15k採取/s
- ・多重化された4シングルエンド入力チャネル
- ・任意20倍利得付き1差動入力チャネル
- ・内蔵2.56V基準電圧
- ・0~2.56Vの差動入力電圧範囲
- ・0~VCCのシングルエンド入力電圧範囲
- ・任意の変換結果左揃え読み出し
- ・連続と単独の変換動作
- ・A/D変換完了割り込み
- 休止形態雑音低減機能

ATtiny15Lは10ビットの逐次比較A/D変換部が特徴です。このA/D変換部はポートBのビンから構成される4つのシングルェント、電圧入力と 1つの差動電圧入力を与える4チャネルのアナログ多重器に接続されます。差動入力(PB3, PB4)はA/D変換前に差動入力電圧での26dB (20倍)増幅段を提供する設定変更可能な利得段を備えています。PB2~5のシングルェント、電圧入力は(基準として)0V (GND)を参照し ます。

A/D変換部はA/D変換器が変換中の一定レベルを保持するための入力電圧を保証する採取&保持(S/H)を含みます。A/D変換部の構成図は図25.に示されます。

公称2.56Vの内部基準電圧がチップとで提供され、この基準電圧は雑音特性向上のため、任意でコンデンサによってAREF(PB0)ピンで 外部的にデカップ(雑音結合を減少)できます。シングルェント、チャネルについては代わりに基準電圧としてVCCが使えます。外部基準電圧 の使用や内部基準電圧をOFFに切り替える任意選択もあります。これらの任意選択はA/D変換多重器選択レシ、スタ(ADMUX)の基準 電圧選択(REFS1,0)ピットを使って選択されます。

操作

A/D変換部は逐次比較を通してアナログ入力電圧を10ビットのデジタル値に変換します。最小値はAGNDを表し、最大値はAREFピンの 電圧-1LSBを表します。

A/D変換器の基準電圧は、A/D多重器選択レジスタ(ADMUX)の基準電圧選択(REFS1,0)ビットへの書き込みにより選択できます。A/D 変換器基準電圧として、VCC、AREFビン、または内部2.56V基準電圧が選択できます。任意で、内部基準電圧は雑音耐性を改善す るため、AREFビンでの外部コンデンサによりデカップ(雑音結合の減少)できます。

アナログ入力チャネルと差動利得はADMUXのチャネル選択(MUX2~0)ビットへの書き込みにより選択されます。4つのA/D変換入力ピン (ADC3~0)の何れもがA/D変換器へのシングルェンド入力として選択できます。ADC2とADC3は各々、差動利得増幅器への非反転、 反転入力として選択できます。

差動チャネルが選択されると、差動利得段はADMUXのMUX2~0ビットの設定に従って選択された利得倍率×1または×20により、選択 された2入力間の差電圧を増幅します。そして、この増幅値がA/D変換器へのアナロケ入力になります。シングルェント・チャネルが使われる と、この利得増幅器は全体が迂回(無視)されます。

ADC2が差動利得増幅器への非反転と反転入力の両方(ADC2-ADC2)として選択されると、利得段と変換回路の残留オフセットが変換結果として直接的に測定されます。この数値はオフセット誤差を1LSB以下に減じるために、同じ利得設定での後続する変換から減算することができます。

A/D変換は単独と連続の2つの動作ができます。単独変換動作では、変換毎に使用者により開始されなければなりません。連続変換動作では絶えず採取とA/Dデータレジスタ(ADCH/ADCL)の更新をします。A/D制御/状態レジスタ(ADCSR)のA/D動作選択(ADFR) ビットは、この2つの利用可能な種別の1つを選択します。

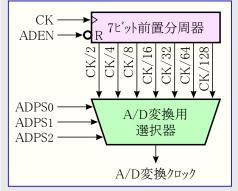
A/D変換部はADCSRのA/D許可(ADEN)ビットの設定(1)により動作が許可されます。基準電圧と入力チャネルの設定は、ADENが設定(1)されるまで実行しません。ADENが解除(0)のとき、A/D変換部は電力を消費しませんので、電力を節約する周期へ移行する前に、A/D変換部をOFFに切り替えることが推奨されます。

ADCSRの変換開始(ADSC)ビットへ論理1を書くことにより、変換が開始されます。このビットは変換が実行中である限り1に留まり、変換 が完了されるとき、ハートウェアにより0に設定されます。変換が実行中の間に違うデータ(入力)チャネルが選択される場合、A/D変換器はチャ ネル変更を実行する前に現在の変換を済ませます。

このA/D変換部はA/Dデータレジスタ(ADCH, ADCL)で示される10ビットの結果を生成します。既定では、この結果が右揃え(16ビットの ビット0側10ビット)で表されますが、任意でADMUXの左揃え選択(ADLAR)ビットを設定(1)することにより、左揃え(16ビットのビット15側10 ビット)で表せます。

この結果が左揃え補正され、8ビットを越える精度が必要とされない場合は、ADCHの読み込みで足ります。さもなければ、データレジス タの内容が同じ変換(からの結果)であることを保証するため、最初にADCLを読み、次にADCHを読まなければなりません。一度 ADCLを読むと、A/D変換器からのA/Dデータレジスタ(ADCH, ADCL)アクセスが防止されます。これは、ADCLを読んでしまい、ADCHを 読む前に変換が完了すると、どちらのレジスタ(ADCH, ADCL)も更新されず、この変換からの結果が失われることを意味します。ADCH が読まれると、ADCH, ADCLへのA/D変換器アクセスが再び許可されます。

A/D変換部には、変換完了時に起動することができる自身用の割り込みがあります。A/DデータレジスタへのA/D変換器アクセスがADCLとADCHの読み込み間で禁止されていると、例え変換結果が失われても、割り込みは起動します。

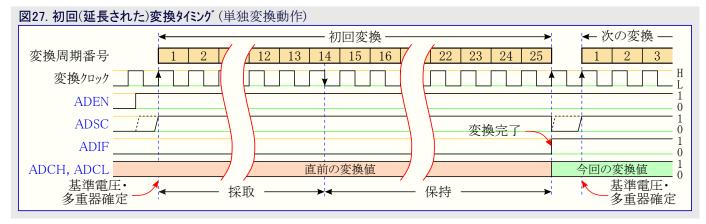

前置分周と変換タイミング

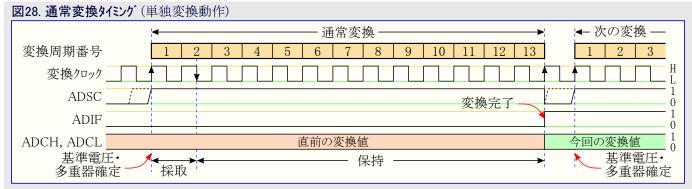
逐次比較回路は50~200kHzの入力クロック周波数を必要とします。より高い入力周波数の使用は変換精度に影響を及ぼします。34頁の「A/D変換器特性」をご覧ください。 A/D変換部はシステム クロックを受け入れ可能なA/D変換クロック周波数に分周する前置分 周器を含みます。

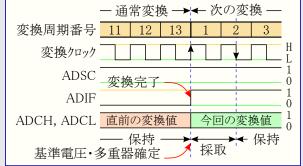
A/D制御/状態レジスタ(ADCSR)のA/Dクロック選択(ADPS2~0)ビットは、100kHz以上のどんなCK(システムクロック)周波数からも適当なA/D変換クロック入力周波数を生成するのに使われます。この前置分周器はADCSRのA/D許可(ADEN)ビットを設定(1)することによってA/D変換部がONに切り替えられる時から計数を始めます。前置分周器はADENビットが設定(1)である限り動作し続け、ADENが解除(0)の時は継続的にリセットされます。

ADCSRのA/D変換開始(ADSC)ビットを設定(1)することによって変換を開始するとき、この変換は直後の変換クロック周期の上昇端で始まります。差動チャネルが選択されている場合、この変換はADENが設定(1)された後、他の全ての変換クロック周期の上昇端で始まるだけです。

通常の変換は13変換クロック周期かかります。或る状態で、A/D変換器は初期化とオフセット誤差を最小にするためにより多くのクロック周期が必要です。これらの延長された変換は25変換クロック周期かかり、次の出来事の後の最初の変換で起きます。


・A/D動作許可へ切り替え (A/D制御/状態レジスタ(ADCSR)のA/D許可(ADEN)ビット1が設定(1))。


- ・基準電圧元を変更 (A/D多重器選択レジスタ(ADMUX)の基準電圧選択(REFS1,REFS0)ビットが値変更)。
- ・差動入力チャネルを選択 (A/D多重器選択レジスタ(ADMUX)のチャネル選択ビット2(MUX2)が設定(1))。同一チャネルでの後続する変換は 延長された変換でないことに注意してください。



実際の採取&保持は通常変換開始後1.5、延長された変換開始後13.5変換クロック周期の位置で行われます。変換が完了すると、結果がA/Dデータレジスタ(ADCH, ADCL)に書かれ、ADCSRのA/D変換完了割り込み要求フラク(ADIF)が設定(1)されます。単独変換動作(ADFR=0)では同時にADSCが解除(0)されます。その後ソフトウェアは再びADSCを設定(1)でき、変換クロックの最初の上昇端で新規変換が開始されます。連続変換動作(ADFR=1)では変換完了後直ちに新規変換が開始され、一方ADSCは1に留まります。200kHzの変換クロック周波数と連続変換動作の使用は、最小変換時間65µs(約15k採取/s)を与えます。変換時間の一覧については表18.をご覧ください。

図29. 連続変換動作タイミング

表18. A/D変換時間

10. A/D&1	天时间			
変換種別	保持点	変換終了	総変換時間	変換時間 (μs)
連続(初回)	13.5	25	25	$125 \sim 500$
単独(初回)	13.5	25	26	$130 \sim 520$
連続(通常)	1.5	13	13	$65 \sim 260$
単独(通常)	1.5	13	14	$70 \sim 280$
<u>≻</u> 赤協吐胆	+11人/友 3	五日江市協	明いふとの赤	HAD AND AND

注:変換時間を除く各番号は変換開始からの変換クロック数です。

(訳注)この表は原書に対して追加/修正されています。

より適切なタイミング図については、AT90S2333またはAT90S 4433データシートの該当箇所を参照してください。

雑音低減機能

A/D変換部はCPUコアと他の周辺I/Oから誘導される雑音を低減するため、A/D変換雑音低減動作(17頁の「**休止形態**」参照)中に A/D変換を可能にする雑音低減機能が特徴です。他の周辺I/Oが変換中に動作しなければならない場合、この動作はアイドル動作に 対して等価的に動作します。この機能の使用を行うには、次の手順が使われるべきです。

- 1. A/D変換が許可(ADEN=1)され、変換中でない(ADSC=0)ことを確認します。単独変換動作が選択(ADFR=0)され、A/D変換完了 割り込みが許可(ADIE=1)されなければなりません。
- 2. A/D変換雑音低減動作(またはアイドル動作)へ移行します。一旦CPUが停止されてしまうと、A/D変換部は変換を開始します。
- 3. A/D変換完了前に他の割り込みが起きなければ、A/D変換完了割り込みがMCUを起動復帰し、A/D変換完了割り込み処理ルーチンを実行します。

■ A/D多重器選択レジスタ (ADC Multiplexer Select Register) ADMUX

ビット	7	6	5	4	3	2	1	0	_
\$07	REFS1	REFS0	ADLAR	_	-	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ビット7,6 - REFS1,0: 基準電圧選択 (Reference Select Bits 1, 0)

これらのビットは表19.で示されるA/D変換器の基準電圧を選択します。これらのビットがA/D変換中に変更されると、(現在の)変換が完 了する(A/D変換制御/状態レジスタ(ADCSR)のA/D変換完了割り込み要求フラグ(ADIF)=1)まで、この変更は実行しません。これらの ビットが変更されるとき、常に次の変換は25変換クロック周期かかります。動的な(差動)チャネルが使われる場合、VCCまたはVCC-1Vより高 い外部AREF(電圧)の使用は、A/D変換精度に影響を及ぼすため推奨されません。AREFビンに外部基準電圧が印加される場合、内 部基準電圧選択種別が使われてはなりません。

表19.A/D変換器の基準電圧選択

A10110 DA1	大品の至十电	
REFS1	REFS0	基準電圧
0	0	VCC (AREF(PB0)と内蔵基準電圧は切り離されます。)
0	1	AREF(PB0)ピンの外部基準電圧(VCCと内蔵基準電圧は切り離されます。)
1	0	2.56V内部基準電圧 (VCCとAREF(PB0)は切り離されます。)
1	1	2.56V内部基準電圧 (VCCは切り離されますが、AREF(PB0)にデカップ用コンデンサが接続できます。)

■ ビット5 - ADLAR : 左揃え選択 (ADC Left Adjust Result)

ADLARビットは、A/Dデータ レジスタ内の変換結果の体裁に影響を及ぼします。ADLARが解除(0)されると、結果は右揃えにされます。 ADLARが設定(1)されると、左揃えにされます。ADLARビットの変更は、進行中のどんな変換にも拘らず、直ちにA/Dデータ レジスタに影 響を及ぼします。このビットの完全な記述については33頁の「A/D**データ レジスタ(ADCH,ADCL**)」をご覧ください。

■ L^{*}ット4,3 - Res : 予約 (Reserved)

これらのビットは予約されており、常に0として読まれます。

■ ビット2~0 - MUX2~0: A/Dチャネル選択 (Analog Channel Select Bits 2~0)

これらのビット値はA/D変換器にどのアナログ入力が接続されるかを選択します。差動入力(ADC2-ADC3)の場合での利得選択も、これらのビットで行われます。作動利得段への両入力としてのADC2選択は、オフセット測定を可能にします。詳細については**表20**.を参照してください。これらのビットが変換中に変更されると、変換が完了する(A/D変換制御/状態レジスタ(ADCSR)のA/D変換完了割り込み要求フラグ(ADIF)=1)まで、この変更は実行されません。

表20.アナロ	が入力チャネルと増幅倍	半選択			
MUX2~	0 シングル エンド 入力	非反転差動入力	反転差動入力	利得	備考
000	ADC0 (PB5)				
001	ADC1 (PB2)	使用不可	使用不可	使用不可	
010	ADC2 (PB3)	使用个时	使用不可	使用个时	
011	ADC3 (PB4)				
100		ADC2 (PB3)	ADC2 (PB3)	$\times 1$	オフセット相殺専用、29頁参照。
101	使用不可	ADC2 (FD3)	ADC2 (FD3)	$\times 20$	4719州祝守用、29頁參照。
110	使用个可	ADC2 (PB3)	ADC3 (PB4)	$\times 1$	
111		ADC2 (FD3)	ADC3 (FD4)	$\times 20$	

表20 アナログ入力チャネルと増幅倍率選邦

■ A/D変換 制御/状態レジスタ (ADC Control and Status Register) ADCSR

ビット	7	6	5	4	3	2	1	0	_
\$06	ADEN	ADSC	ADFR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ビット7 - ADEN : A/D許可 (ADC Enable)

このビットへの論理1書き込みがA/D動作を可能にします。このビットをOに解除することにより、A/D変換部はOFFに切り替えられます。 A/D変換中のOFFへの切り替えは、その変換を終了します。

■ ビット6 - ADSC : A/D変換開始 (ADC Start Conversion)

単独変換動作では、変換毎に変換を開始するため、このビットに論理1が書かれなければなりません。連続変換動作では、最初の変換を開始するため、このビットに論理1が書かれなければなりません。

変換が完了すると、ADSCは単独変換動作で0に戻り、連続変換動作で1に留まります。

このビットへの<mark>0</mark>書き込みは無効です。

■ ビット5 - ADFR:連続/単独変換動作選択 (ADC Free Running Select)

このビットが設定(1)されるとA/D変換は連続変換動作で動きます。この動作では、継続的に採取とA/Dデータレジスタを更新します。このビットの解除(0)は連続変換を終了します(単独変換動作になります)。動的なチャネル(A/D多重器選択レジスタ(ADMUX)のチャネル選択ビット2(MUX2)=1)が使われる場合、そのチャネルは連続変換動作へ移行する前に選択されなければなりません。連続変換動作移行後の動的チャネル選択は、A/D変換器の不確定な動作に終わるかもしれません。

■ ビット4 - ADIF : A/D変換完了割り込み要求7ラグ (ADC Interrupt Flag)

A/D変換が完了し、A/Dデータレジスタが更新されるとき、このビットが設定(1)されます。ステータスレジスタ(SREG)の全割り込み許可(I)ビット とA/D変換完了割り込み許可(ADIE)ビットが設定(1)されていると、A/D変換完了割り込みが実行されます。ADIFは対応する割り込み 処理へクタ実行時、自動的に解除(0)されます。代わりに、このフラケへの論理1書き込みによっても解除(0)されます。ADCSRで読み一変 更-書き(リート、モデファイライト)を行う場合、保留割り込みが禁止されることに注意してください。これはSBIとCBIの命令が使われる場合 にも適用されます。

■ ビット3 - ADIE : A/D変換完了割り込み許可 (ADC Interrupt Enable)

このビットとステータスレジスタ(SREG)の全割り込み許可(I)ビットが設定(1)されると、A/D変換完了割り込みが有効に(許可)されます。

■ ビット2~0 - ADPS2~0 : A/D変換クロック選択 (ADC Prescaler Select Bits)

これらのビットはCK(システム クロック)周波数とA/D変換器への入力クロック間の分周比を決めます。表21.をご覧ください。

表21. A/D変換クロック選択 (CK=システム クロック)

_													
	ADPS2	0	0	0	0	1	1	1	1				
	ADPS1	0	0	1	1	0	0	1	1				
	ADPS0	0	1	0	1	0	1	0	1				
	A/D変換クロック	CK/2	CK/2	CK/4	CK/8	CK/16	CK/32	CK/64	CK/128				

■ A/Dデータ レジスタ (ADC Data Register) ADCH,ADCL

\$05 - - - - - ADC9 ADC8 ADCH Read/Write R R R R R R R R R 初期値 0 0 0 0 0 0 0 0 0 ビット 7 6 5 4 3 2 1 0 \$04 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADC1 Read/Write R R R R R R R R Mide 0 0 0 0 0 0 0 0 ADLAR=1 H 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC4 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC4 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3		ADLAR=0	侍							
Read/Write R R R R R R R R R 初期値 0 0 0 0 0 0 0 0 0 ビット 7 6 5 4 3 2 1 0 \$04 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADC1 Read/Write R R R R R R R R R M期値 0 0 0 0 0 0 0 0 0 ADLAR=1時 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH 7 6 5 4 3 2 1 0 9 8	ヒット	15	14	13	12	11	10	9	8	_
初期値000000000ビット76543210\$04ADC7ADC6ADC5ADC4ADC3ADC2ADC1ADC0ADC1Read/WriteRRRRRRRRR初期値000000000ADLAR=1時15141312111098ADC9ADC8ADC7ADC6ADC5ADC4ADC3ADC2ADCH765432100	\$05	—	—	-	-	-	-	ADC9	ADC8	ADCH
ビット76543210\$04ADC7ADC6ADC5ADC4ADC3ADC2ADC1ADC0ADC1Read/WriteRRRRRRRRR初期値000000000ADLAR=1時15141312111098ADC9ADC8ADC7ADC6ADC5ADC4ADC3ADC2ADCH76543210	Read/Write	R	R	R	R	R	R	R	R	
\$04 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADC1 Read/Write R	初期値	0	0	0	0	0	0	0	0	
Read/Write R R R R R R R R 初期値 0 0 0 0 0 0 0 0 0 ADLAR=1時 15 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH 7 6 5 4 3 2 1 0 0	ビット	7	6	5	4	3	2	1	0	
初期値 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$04	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
ADLAR=1時 15 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH 7 6 5 4 3 2 1 0	Read/Write	R	R	R	R	R	R	R	R	
15 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH 7 6 5 4 3 2 1 0	初期値	0	0	0	0	0	0	0	0	
15 14 13 12 11 10 9 8 ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH 7 6 5 4 3 2 1 0		ADLAR=1	ŧ							
7 6 5 4 3 2 1 0				13	12	11	10	9	8	_
		ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
		7	6	5	4	3	2	1	0	_
ADCI ADCI ADCL		ADC1	ADC0	_	_	_	_	_	_	ADCL

A/D変換が完了すると、その結果がこれら2つのレジスタで得られます。ADCLが読まれると、ADCHが読まれるまでA/Dデータレジスタは 更新されません。従って、この結果が左揃えで、かつ8ビットを越える精度が必要とされないならば、ADCHを読むことで足ります。さも なければ、最初にADCLが、次にADCHが読まれなければなりません。A/D多重器選択レジスタ(ADMUX)の左揃え選択(ADLAR)ビット はこのレジスタから結果が読まれる方法に影響を及ぼします。ADLARが設定(1)されると、結果は左揃えにされます。ADLARが解除(0) されると、結果は(既定の)右揃えにされます。

■ ADC9~0 : A/D変換結果 (ADC Conversion result)

これらのビットは変換からの結果を表します。差動チャネルについては31頁の表20.で示される利得補正後の値です。\$000が接地(GND) を表し、\$3FFが選択された基準電圧-1LSBを表します。

複数チャネル走査

アナログ入力チャネルの変更は常に変換が終了されるまで遅らされるため、連続変換動作はA/D変換部の割り込みなしでの複数チャネル 走査に使えます。通常、A/D変換完了割り込みがチャネル移動を行うために使われます。しかし、次の要素が考慮されるべきです。 一旦読まれるべき結果が用意されると、割り込みが起動します。連続変換動作では、割り込みが起動するとき、次の変換が直ちに始まります。割り込み起動後にA/D多重器選択レジスタ(ADMUX)が変更される場合、次の変換は既に開始されており、これには変更前の設定が使われます。

雑音低減技術

ATtiny15L内外のデジタル回路はアナログ測定の精度に影響を及ぼすかもしれないEMIを発生します。変換精度が重要な場合、次の技法を適用することによって雑音レベルを減少できます。

- 1. ATtiny15Lのアナログ部と応用回路内の全てのアナログ部品は、基板上で分離したアナログGND面を持つべきです。このアナログGND面は基板上の1点でデジタルGND面に接続されます。
- 2. アナログ信号経路は可能な限り最短を維持します。アナログ信号線がアナログGND面上走っているか確認し、高速切り替えのデジタル 信号線から充分離すことを厳守します。
- 3. CPUからの誘導雑音を低減するため、A/D変換雑音低減機能を使います。
- 4. ポートAピンのいくつかがデジタル出力として使われる場合、変換実行中はそれらを切り替えないことが重要です。

A/D変換器特性

表A. A/	D変換特性							
シンボル	項目		条件	最小	代表	最大	単位	
	分解能	シングル エンドブ	、力変換		10		ビット	
	刀胜肥	×1,×20差動	1入力変換		8		L Mr	
		20,000,000,000	変換クロック=200kHz		1	2		
	絶対精度	シングル エント VREF=4V	変換クロック=1MHz		4			
		VICLI ¹⁻⁴ V	変換クロック=2MHz		16		LSB	
	積分非直線性誤差				0.5		LOD	
	微分非直線性誤差	VREF>2V			0.5			
	オフセット(セ゛ロ)誤差				1			
	変換時間	連続変換動作	ET.	65		260	μs	
	変換クロック周波数			50		200	kHz	
VDDD	基準電圧	シングル エンドブ	、力変換	2.0		VCC		
VREF	苤毕电 仁	差動入力変換		2.0		VCC-0.2	V	
VINT	内蔵2.56V基準電圧			2.4	2.56	2.7		
RREF	基準電圧入力インピーダンス			6.0	10.0	13.0	kΩ	
RAIN	アナログ入力インピーダンス				100.0		MΩ	

入出力ポートB

AVRの全てのポートは標準デジタルI/Oポートとして使われるとき、真の読み-修正-書き(リート・モデファイライト)動作を有します。これはCBI やSBI命令で、他の何れのピンの方向をも不測の変化なしにポートピンの1つの方向が変更できることを意味します。駆動(出力)値変更 や、(入力として設定されている場合の)プルアップ抵抗の許可/禁止(有無)についても同じく適用されます。

ポートBは6ビットの双方向I/Oポートです。

ポートBについては3つのI/Oメモリアトレス位置が、各々、データ出力レジスタ(PORTB),\$18、データ方向レジスタ(DDRB),\$17、データ入力レジスタ (PINB),\$16に割り当てられます。ポートBデータ入力レジスタ(入力ピン)アトレスは読み込みのみ可能で、一方データ出力レジスタとデータ方向レ ジスタは読み書きが可能です。

ポートPB5~0には3頁の「ピン概要」項で記述される特別な機能があります。PB5は外部リセットとして設定されなければ、プルアップなしの 入力またはオープントレイン出力です。全てのポートピンには、プルアップ禁止(PUD)で無効にできる、個別に選択可能なプルアップ抵抗があ ります。

PB0~4のポートB出力緩衝部は20mAの吸い込み電流を流せますので、LED表示器を直接駆動できます。PB5は12mAの吸い込み電流を流せます。PB0~4ピンが入力として使われ、外部的にLowへ引き込まれるとき、内蔵プルアップ抵抗が有効化されていると、それらには吐き出し電流(IIL)が流れます。

未接続ピン

いくつかのピンが未使用にされる場合、それらのピンが定義されたレベルを持つことを保証することが推奨されます。未使用ピンの定義されたレベルを保証する最も簡単な方法は内部プルアップを許可することです。この場合、リセット中のプルアップは禁止されます。リセット中の低消費電力が重要ならば、外部プルアップまたはプルダウンを使うことが推奨されます。未使用ピンを直接GNDまたはVCCに接続することは、ピンが偶然に出力として設定されると過電流を引き起こす可能性があるため推奨されません。

ポ−トB交換機能

ATtiny15Lでの4つのポートピン、PB2, PB3, PB4, PB5にはA/D変換器の入力としての交換機能があります。いくつかのポートBピンが出力として設定される場合、変換が実行中のときに、それらが切り替わらないことが重要です。これは変換の結果を不正にするかもしれません。A/D変換雑音低減動作とパワーダウン動作中、シュミットドリガデジタル入力が(ピンから)切り離されます。これはパワーダウン動作中、過大な電力消費の原因とならずに、VCC/2近辺のアナログ電圧が存在するのを許容します。交換機能のあるポートBピンは、3頁の表1. で示されます。

PB4~0ピンが交換機能で使われるとき、ポートB方向レジスタ(DDRB)とポートB出力レジスタ(PORTB)は交換機能の説明に従って設定されなければなりません。PB5が外部リセットピンとして使われるとき、対応するDDRBとPORTBビットの値は無視されます。

■ ポートB出力レジスタ (Port B Data Register) PORTB

ビット	7	6	5	4	3	2	1	0	
\$18	-	—	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ポートB方向レジスタ (Port B Data Direction Register) DDRB

ビット	7	6	5	4	3	2	1	0	
\$17	-	-	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
初期値	0	0	0	0	0	0	0	0	

■ ポートB入力レジスタ (Port B Input Address) PINB

ヒット	7	6	5	4	3	2	1	0	_
\$16	-	-	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	PINB
Read/Write	R	R	R	R	R	R	R	R	
初期値	0	0	不定	不定	不定	不定	不定	不定	

実際のポートB入力レジスタ(PINB)はレジスタではなく、このアトレスはポートB各ピンの物理的な値へのアクセスができます。ポートB出力レジスタ (PORTB)を読む時はポートB出力ラッチが読まれ、ポートB入力レジスタ(PINB)を読む時は、このピン上に存在する論理値が読まれます。

ポートB 標準デジタル入出力

デジタルI/Oピンとして使われるとき、ポートBの下位5ピンは同じです。

標準I/OピンPBnは、ポートB方向レジスタ(DDRB)のDDBnビットがそのピンの入出力方向を選択し、DDBnが設定(1)されると、出力ピンとして設定されます。DDBnが解除(0)されると、入力ピンとして設定されます。ポートB出力レジスタ(PORTB)のPORTBnが設定(1)され、そのピンが入力ピンとして設定されている場合、MOSプルアップ抵抗が有効化されます。プルアップ抵抗をOFFに切り替えるには、PORTBnが解除(0)されるか、またはそのピンが出力として設定されなければなりません。全ポートのプルアップは、MCU制御レジスタ(MCUCR)の全プルアップ禁止(PUD)ビットの設定(1)によっても禁止できます。

DDBn	PORTBn	入出力	プルアップ抵抗	備考
0	0	入力	なし	高インピーダンス (Hi-Z)
0			なし	MCUCRのPUD=1
0	1	入力	あり	PBnに外部からLowを入力すると吐き出し電流が流れます。PUD=0
1	0	出力	なし	Low出力
1	1	出力	なし	High出力

表22. ポートBピンに対するDDBnの関係

注: nは4,3~0でビット番号を示します。

ATtiny15LのPB5は入力かオープンドレイン出力です。このピンが12V(高電圧直列)プログラミングに使われるため、ピン上の電圧をVCC +0.5Vに制限する静電破壊防止ダイオードがありません。従って、通常動作中、このピンの電圧がVCC+1V以上に上昇しないことを保証 するために特別な注意が必要とされるべきです。これは予期せぬリセットやプログラミング動作への移行の原因になるかもしれません。 全てのポートBビンはピン変化割り込みを起動できるピン変化検出器に接続されます。詳細については13頁の「ピン変化割り込み」をご覧 ください。

ポートBの交換機能

ポートBには次の交換機能があります。

• RESET - ホ[°]ートB ビット5 : PB5

- RESET: RSTDISBLヒューズが非プログラム(1)のとき、このピンは外部リセットとして扱います。RSTDISBLヒューズがプログラム(0)されると、この ピンは標準入力ピンまたはオープンドレイン出力ピンです。ポートB方向レジスタ(DDRB)のDDB5が解除(0)されると、PB5は入力ピン として設定されます。DDB5が設定(1)されると、このピンはオープンドレイン出力です。
- INT0/T0/(SCK) ポートB ビット2 : PB2
 - INT0:通常動作で、このピンは外部割り込み0入力として扱えます。詳細と許可の方法については「割り込みの扱い」記述をご覧く ださい。このピンが出力として設定されていても、このピン上の有効動作が割り込みを起動することに注意してください。
 - **T0**:通常動作で、このピンはタイマ/カウンタ外部クロック入力として扱えます。より多くの詳細については「タイマ/カウンタ0」記述をご覧ください。タイマ/カウンタ外部クロック駆動が選択されると、例え出力として設定されていても、本ピン上の有効動作はタイマ/カウンタをクロック駆動します。

SCK: 直列プログラミング動作で、このピンは直列クロック入力(SCK)として扱います。

• OC1A/AIN1/(MISO) - ポートB ビット1 : PB1

- OC1A:通常動作で、このピンはタイマ/カウンタ1比較一致出力(OC1A)として扱えます。出力を許可する方法とより多くの詳細について は「タイマ/カウンタ1」記述をご覧ください。OC1AピンはPWM動作タイマ機能の出力ピンでもあります。
- AIN1:このピンは内蔵アナログ比較器の反転入力としても扱います。

MISO: 直列プログラミング動作で、このピンは直列データ出力(MISO)として扱います。

• AREF/AIN0/(MOSI) - ポートB ビット0 : PB0

- AREF: このピンはA/D変換器の基準電圧用に選択できます。詳細については「A/D変換器 (アナログ多重器, 利得段)」章を参照して ください。
- AINO:このピンは内蔵アナログ比較器の非反転入力としても扱います。

MOSI: 直列プログラミング動作で、このピンは直列データ入力(MOSI)として扱います。

ATtiny15

メモリ フ゜ロク゛ラミンク゛

プログラム メモリとデータ メモリ用施錠ビット

ATtiny15L MCUは、非プログラム(1)のままか、**表23**.で示される付加機能を得るためにプログラム(<mark>0</mark>)できる、2つの施錠ビットを提供します。 この施錠ビットはチップ消去でのみ1に消去できます。

友23. 他錠ビットの保護裡別									
保護番号	メモリ施	錠ビット	伊莱廷则						
休丧钳方	LB1	LB2	保護種別						
1	1	1	メモリ施錠機能は許可されません。						
2	0	1	フラッシュメモリとEEPROMのプログラミング機能が禁止されます。						
3	0	0	保護種別2と同様、更に照合も禁止されます。						

ヒュース゛ヒ゛ット

ATtiny15Lには6つのヒュース、ビット、BODLEVEL, BODEN, SPIEN, RSTDISBL, CKSEL1,0があります。全てのヒュース、ビットは高電圧と 低電圧の直列プログラミング動作の両方でプログラミングできます。ヒューズの変更はプログラミング中、どんな効果も持ちません(保留されま す)。

- BODLEVEL: BODLEVELヒュースは低電圧検出電圧の選択と起動(リセット遅延)時間の変更をします。11頁の「低電圧(ブラウンアウト) 検出リセット」と10頁の表5.をご覧ください。既定値はプログラム(0)です。
- BODEN: BODENヒューズがプログラム(0)されると、低電圧検出器(BOD)が許可されます。11頁の「低電圧(ブラウンアウト)検出リセット」をご 覧ください。既定値は非プログラム(1)です。
- ・ SPIEN: SPIENヒューズ ビットがプログラム(0)されると、低電圧直列プログラジングが許可されます。既定値はプログラム(0)です。低電圧直列 プログラジング動作中のこのヒューズの非プログラム(1)化は、将来の実装書き換えの意図を禁止してしまいます。
- ・RSTDISBL: RSTDISBLがプログラム(0)されると、PB5ピンの外部リセット機能が禁止されます(注)。既定値は非プログラム(1)です。低電圧 直列プログラミング動作中のこのヒューズの非プログラム(1)化は、将来の実装書き換えの意図を禁止してしまいます。
- ・CKSEL1,0: 使うのにCKSEL1.0をどう組み合わせるかについては、10頁の表5.をご覧ください。既定値は'00'(64ms+18CK)です。

ヒューズビットの状態はチップ消去による影響を受けません。

注: RSTDISBLヒュースがプログラム(0)される場合、その後、プログラミング装置(書き込み器)はATtiny15Lが電源ONJセット中、PB5に+12Vを 印加すべきです。そうしないと、PB0若しくはPB5駆動の衝突による原因でプログラミング動作への移行失敗が有り得ます。

識票バイト

Atmelの全マイクロコントローラはデバイス識別用に3パイの識票符号を持ちます。この符 (1)号は直列と高電圧プログラミング動作の両方で読めます。この3パイトは他から分離さ (2)れた空間に存在します。ATtiny15Lの識票符号を右に示します。 (3)

① \$000 : \$1E	製造業者Atmel。
2 \$001 : \$90	フラッシュ メモリ容量1Kバイト。
③ \$002 : \$06	②値\$90と合せ、ATtiny15L。

校正バイト

ATtiny15Lには内蔵RC発振器用の1小仆校正値があります。このハイトは識票アトレス空間のアトレス\$000の上位ハイトにあります。このハイトの使用を行うには、このハイトがこの位置から読まれ、通常のプログラム用フラッシュメモリ内に書かれるべきです。起動時に使用者プログラムは、このフラッシュメモリ位置を読み、その値を発振校正レジスタ(OSCCAL)に書かなければなりません。

フラッシュ メモリとEEPROMのフ[°]ロク[・]ラミンク^{*}

AtmelのATtiny15Lは実装再書き込み可能な1Kバイトのプログラム用フラッシュメモリと64バイトのデータ用EEPROMメモリを提供します。

ATtiny15Lにはプログラム用内蔵フラッシュメモリとデータ用EEPROMメモリが消去(全ビット=1)されてプログラムされる準備が整った状態で搭載されています。

このデバイスは高電圧(12V)直列プログラシング動作と低電圧直列プログラシング動作を支援します。+12Vはプログラム許可のためのみに使われ、このピンにより特筆すべき電流は流されません(100µA未満)。低電圧直列プログラシング動作は実装済みのATtiny15Lにプログラムとデータを書き込む便利な方法を提供します。

ATtiny15LのフラッシュメモリとEEPROMはどちらのプログラミング動作でもハイ사単位でプログラムされます。EEPROMについては低電圧直列 プログラミング動作での自動書き込み命令内で自動消去周期が提供されます。

プログラミング中の供給電圧は表24.に従っていなければなりません。

デバイス	低電圧直列プログラミング	高電圧直列プログラミング
ATtiny15L	$2.7 \sim 5.5 \text{V}$	$4.5 \sim 5.5 V$

高電圧直列プログラミング

本項はATtiny15Lでのプログラム用フラッシュメモリ、データ用EEPROM、施錠ビット、ヒュースビットの高電圧直列プログラミングと照合の方法を記述します。

高電圧直列プログラミング手順

高電圧直列プログラミング動作でのATtiny15Lのプログラミングと照合は次の手順が推奨されます(命令形式は表25.参照)。

- 次の手順で電源を投入します。
 VCCとGND間に4.5~5.5Vを印加します。PB5とPB0をLow(0)に設定し、最低30µs待ちます。PB3をLow(0)に設定します。最低 100ns待ちます。PB5~12Vを印加し、PB0を変更する前に最低100ns待ちます。何れかの命令を与える前に8µs待ちます。
- 2. フラッシュ メモリは最初にアトレス、次に下位、上位ハイト データを供給することにより、1ハイト単位で書き込まれます。書き込み命令は自己タイシングで行われ、PB2(RDY/BSY)ピンがHighになるまで待機します。
- 3. EEPROMは最初にアドレス、次にハイトデータを供給することにより、1ハイト単位で書き込まれます。書き込み命令は自己タイングで行われ、PB2(RDY7BSY)ピンがHighになるまで待機します。
- 4. 何れのメモリ位置も、選択されたアドレスの内容を直列出力(PB2)ピンに読み戻す、読み出し命令の使用で検証ができます。
- 5. 電源OFF手順
 - ・PB3をLow(0)にします。
 - ・PB5をLow(0)にします。
 - ・VCC電源をOFFにします。

ATtiny15Lへ直列データを読み書きするとき、データは内部クロックを生成するために必要とされる16個の外部クロック パルスの第8上昇端で クロック駆動されます。説明については図31、図32、表26.をご覧ください。

図31. 高電圧直列プログラミングバイト通信波形									
直列データ入力(PB0)	MSBX X X X X LSB								
直列命令入力(PB1)	MSBX X X X X X LSB								
直列データ出力(PB2)	MSBX X X X X LSB								
内部直列クロック									
直列クロック入力(PB3)									

表25. 高電圧直列プログラミング命令一式

命令				命令	形式						備考	
сі (і н	PB	第1バイト	第2バイト			バル			バイト		ひ 。 田	
	0	$0 \ 1000 \ 0000 \ 00$									第4バイト後PB2=Highまで待機しま	
チップ消去	1	$0 \ 0100 \ 1100 \ 00$	0 0110 0100	00	0 0110	1100	00 0	0 0100	1100 (用4/11版PD2-Filgliよで付機します。	
	2	x xxxx xxxx xx	x xxxx xxxx	XX	X XXXX	XXXX	XX Z	x xxxx	XXXX X	XX	9 0	
75 1 171	0	0 0001 0000 00	0 0000 000H	00	0 LLLL	LLLL	00					
フラッシュ メモリ	1	0 0100 1100 00	0 0001 1100	00	0 0000	1100	00				第3バイトは新規アドレス毎、第2バイト	
書き込みアドレス設定		x xxxx xxxx xx	x xxxx xxxx	xx	x xxxx	XXXX	xx				は新規ページ毎に設定します。	
		O WWWW WWWW OO										
フラッシュ メモリ		0 0010 1100 00										
下位バ仆書き込み		x xxxx xxxx xx									第3バイト後PB2=Highまで待機しま	
			0 0000 0000		0 0000					_	す。新規アドレス毎に第1~3バイトを	
フラッシュ メモリ	-	0 0011 1100 00				1100				_	繰り返します。	
上位バイ書き込み										_		
		X XXXX XXXX XX			0 0000					_		
フラッシュ メモリ		0 0000 0010 00								_	第2,3バイトは新規アドレス毎に設定し	
売み出しアドレス設定		0 0100 1100 00			0 0000	1100	00				ます。	
	2	X XXXX XXXX XX			X XXXX	XXXX	XX					
フラッシュ メモリ		0 0000 0000 00										
下位バイ読み出し		0 0110 1000 00	0 0110 1100	00								
	2	x xxxx xxxx xx	R RRRR RRRx	XX							新規アドレス毎に第1,2バイトを繰り返	
フラッシュ メモリ	0	0 0000 0000 00	0 0000 0000	00							します。	
	1	0 0111 1000 00	0 0111 1100	00								
上位バイ・読み出し	2	x xxxx xxxx xx	R RRRR RRRx	XX								
	0	0 0001 0001 00	0 00LL LLLL	00								
EEPROM		0 0100 1100 00									第2バイトは新規アドレス毎に設定し	
書き込みアドレス設定	2	x xxxx xxxx xx	x xxxx xxxx	xx							す。	
		O WWWW WWWW OO			0 0000	0000	00				第3バイト後PB2=Highまで待機しま	
EEPROM		0 0010 1100 00									す。新規アドレス毎に第1~3バイトを	
バ仆書き込み		x xxxx xxxx xx			0 0000						操り返します。	
		0 0000 0011 00			0 0000	0000	00			_		
EEPROM		0 0100 1100 00								_	第2バイトは新規アドレス毎に設定し	
読み出しアドレス設定	$\frac{1}{2}$									_	す。	
		X XXXX XXXX XX								_		
EEPROM		0 0000 0000 00									新規アドレス毎に第2バイトを繰り返し	
バイ読み出し		0 0110 1000 00									ます。	
	2											
ヒュース ビット		0 0100 0000 00									第4バイト後PB2=Highまで待機しま	
書き込み		0 0100 1100 00	0 0010 1100	00	0 0110	0100	00 (0 0110	1100 (T.	
		X XXXX XXXX XX						X XXXX		XX	, 0	
施錠ビット		$0 \ 0010 \ 0000 \ 00$									第4バイト後PB2=Highまで待機しま	
書き込み		$0 \ 0100 \ 1100 \ 00$								00	新40、11版FD2-Iligiiよく付機しよ す。	
首さ込み		x xxxx xxxx xx						0 0000	0000	00	7 0	
ヒュース゛ヒ゛ット	0	0 0000 0100 00	0 0000 0000	00	0 0000	0000	00					
	1	0 0100 1100 00	0 0110 1000	00	0 0110	1100	00					
読み出し	2	x xxxx xxxx xx	x xxxx xxxx	XX	8 765x	x 43 x	XX					
	0	0 0000 0100 00	0 0000 0000	00	0 0000	0000	00					
施錠ビット		0 0100 1100 00										
読み出し		x xxxx xxxx xx										
		0 0000 1000 00						0 0000	0000	00		
識票バイト		0 0100 1100 00								00	新規アドレス毎に第2~4バイトを繰り	
読み出し												
	$\frac{2}{0}$	x xxxx xxxx xx 0 0000 1000 00	0 0000 0000	00	0 0000	0000						
		0 0100 1000 00										
校正バイト	1	0 0100 1100 001	0 0000 1100									
校正バイト 読み出し							37 37	טטטט ש				
読み出し	2	x xxxx xxxx xx				XXXX						
読み出し 1: H = アドレス上位ハ	2 ごイトの	x xxxx xxxx xx つビット 1 =	·施錠ビット1((LB1)	XXXX	5 =	= RSTE	DISBL	ヒュー	-ス [*] ビット	
読み出し 1 : H = アト・レス上位ハ L = アト・レス下位ハ	2 、イトの 、イトの	x xxxx xxxx xx Dビット 1 = Dビット 2 =	: 施錠ビット1 (: 施錠ビット2 ((LB1 (LB2)		5 = 6 =	= RSTE = SPIEI	DISBL N ヒュージ	ヒュー ズ ヒ		
読み出し 1: H = アドレス上位ハ L = アドレス下位ハ	2 、イトの 、イトの	x xxxx xxxx xx つビット 1 =	: 施錠ビット1 (: 施錠ビット2 ((LB1 (LB2)		5 = 6 =	= RSTE = SPIEI	DISBL N ヒュージ	ヒュー ズ ヒ		
読み出し 1: H = アドレス上位ハ L = アドレス下位ハ	2 、イトの 、イトの 、タ(N	x xxxx xxxx xx Dビット 1 = Dビット 2 = ACU出力) 3 =	: 施錠ビット1 (: 施錠ビット2 ((LB1 (LB2 ュース))) ビット		5 = 6 = 7 =	= RSTE = SPIEI = BOD	DISBL N ヒュー: EN ヒュ	ヒュ- ス゛ ヒ .ース゛		

x = 0か1 (無視または無効)

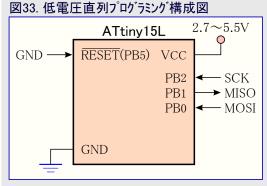
注2: 施錠ビットはチップ消去の実行によってのみ解除(非プログラム(1))されます。

高電圧直列プログラミング特性

図32. 高電圧直列プログ	ラミンク゛タイミンク゛			
データ入力(SDI: PB0) 命令入力(SII: PB1)	無效人無效	<u></u> 有效 <u></u>	無効	有效 大 無效
直列クロック(SCI: PB3)		$t_{\rm IVSH}$ \leftarrow $t_{\rm SHIX}$	$ t_{SHSL}$ 14 15 0 1	
内部直列クロック			→ ←t _{SLSH}	
データ出力(SDO: PB2)		t _{SHOV}		X

表26. 高電圧直列プログラミング特性(特記条件を除いて、TA=25℃±10%, VCC=5.0V±10%)								
シンホール	項目	最小	代表	最大	単位			
t _{SHSL}	SCIパルスHレヘブル幅	25						
t _{SLSH}	SCIパルスLレヘブル幅	25						
t _{IVSH}	SCI↑に対するSDI,SII準備時間	50			ns			
t _{SHIX}	SCI↑に対するSDI,SII保持時間	50						
t _{SHOV}	SCI↑に対するSDO出力遅延時間	10	16	32				

低電圧直列プログラミング


フラッシュメモリとEEPROMの両方はRESETがGNDに引かれている間に直列SPIハスを使ってプログラミングできます。この直列インターフェースはSCK入力、MOSI入力、MISO出力ピンで構成されます(図33.参照)。RESETをLowレヘブルに設定後、プログラムや消去命令が実行される前に、プログラミング許可命令が最初に実行されなければなりません。

EEPROMに対しては自己タイミングによる書き込み命令内で先行して自動消去周期 が提供される(低電圧直列プログラミングのみ)ので、最初にチップ消去命令を実行す る必要はありません。チップ消去命令はフラッシュメモリとEEPROMの全ての内容を\$FF にします。

フラッシュメモリとEEPROMはフ[°]ログラム用フラッシュメモリが\$0000~\$01FF、データ用EEPR OMメモリが\$0000~\$003Fの分離されたアドレス空間を持ちます。

このデバイスは未校正最小周波数(0.8~1.6MHz)で内蔵クロックからクロック駆動されます。直列クロック(SCK)のLow区間とHigh区間の最小値は次のように定義されます。

Low区間 >2 MCUクロック周期 High区間>2 MCUクロック周期

低電圧直列プログラミング手順

ATtiny15Lに直列データを書く時はSCKの上昇端で行われ、読む時はSCKの下降端で行われます。これらの詳細タイシングについては 図34、図35、表28.を参照してください。

低電圧直列プログラミング動作でのATtiny15Lのプログラミングと検証は次の手順が推奨されます。(4ハイトの命令形式は表27.を参照)

- 次の手順で電源を投入します。
 RESETとSCKがLow(0)に設定されている間中に、VCCとGND間へ電源を供給します。電源投入中、SCKがLow(0)に保持されることを書き込み器が保証できない場合、SCKがLow(0)に設定されてしまった後、RESETは最低MCU周期幅2つ分の正パルスが与えられなければなりません。
- 2. 最低20ms待機し、MOSI(PB0)ピンにプログラミング許可命令を送ることによって直列プログラミングを可能にします。直列クロック(SCK)入力のLowとHighの最小時間について、上の項目を参照してください。
- 3. 通信の同期が外れていると、直列プログラミング命令が動作しません。同期しているとき、プログラム許可命令の第3バイ・送出時に第2 パイト(\$53)を送り返します。この送り返しが成功か失敗かによらず、命令の4バイト全てが送信されなければなりません。送り返しが \$53でなかった場合、SCKに正パルスを与え、新規プログラミング許可命令を行います。32回の試行で\$53が検出できない場合、低電 圧直列プログラミング機能のないデバイスが接続されています。
- 4. チップ消去が実行される場合(フラッシュ メモリの消去のために実行が必要)、この命令実行後twD_ERASE(42頁の表29.参照)時間待機 して、RESETに正パルスを与え、手順2.からを行います。
- 5. フラッシュメモリやEEPROMは適切な書き込み命令内でアトレスとデータを供給することによって1ハイト単位で書かれます。EEPROMメモリ 位置は、新規(今回)データが書かれる前、最初に自動消去されます。フラッシュメモリやEEPROMの次のハイトが書ける時を検出するた めにデータポーリングを使ってください。ポーリングが使われない場合、次の命令送出前にtwD_FLASHまたはtwD_EEPROM(42頁の表 30.参照)時間待機します。消去されているデハイスでは、\$FFのデータを書く必要がありません。
- 6. 何れのメモリ位置も、選択されたアドレスの内容を直列出力MISO(PB1)ピンに読み戻す、読み出し命令の使用で検証ができます。
- 7. プログラミング終了時、通常動作とするためには、RESETをHigh(1)に設定します。
- 8. 電源OFF手順(必要な場合)
 - ・ RESETをHigh(1)にします。
 - ・VCC電源をOFFにします。

テ゛ータ ホ゜ーリンク゛

フラッシュメモリまたはEEPROM内でハイトが書かれているとき、書かれているアトレス位置を読むと、値\$FFが得られます。書かれた値が正しく読めると同時に、デバイスは新規ハイトの準備が整います。これは次バイトが書ける時を決めるのに使われます。これは値\$FFについては行えず、この値を書くときは、次バイト書き込み前に最低twD_FLASHまたはtwD_EEPROM待たなければなりません。チップ消去されたデバイスの内容は全て\$FFですので、書き込み値\$FFのアトレスの書き込みは飛ばすことができます。これはデバイスをチップ消去しないでEEPROMが再書き込みされる場合、適用されません。この場合、値\$FFについてデータホーリングは使えず、次バイト書き込み前に最低twD_EEPROM待たなければなりません。twD_FLASHとtwD_EEPROM値については**表30**.をご覧ください。

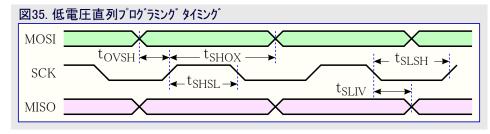


図34. 低電圧直列プログラミングバイト通信波形								
直列データ入力MOSI (PB0) MSB X X X X LSB								
直列データ出力MISO (PB1) / MSB / X / X / LSB								
直列クロック入力SCK (PB2)								

表27. 低電圧直列プログラミング命令一式

命令		命令	形式	動作			
יד קיי	第1バイト	第2バイト 第3バイ		第4バイト	当 川 下		
プログラミング許可	1010 1100	0101 0011	XXXX XXXX	XXXX XXXX	RESET=Low中、プログラミングを許可します。		
チップ消去	1010 1100	100x xxxx	XXXX XXXX	XXXX XXXX	フラッシュ メモリとEEPROMを消去します。		
フラッシュ メモリ読み出し	0010 <mark>P</mark> 000	xxxx xxx <mark>H</mark>	LLLL LLLL	RRRR RRRR	アドレス <mark>H:L</mark> のP(H/L)バイトを読み出します。		
フラッシュメモリ書き込み	0100 <mark>P</mark> 000	xxxx xxx <mark>H</mark>	LLLL LLLL	WWWW WWWW	アドレス <mark>H:L</mark> のP(H/L)バイトに書き込みます。		
EEPROM読み出し	1010 0000	XXXX XXXX	xxLL LLLL	RRRR RRRR	アドレスLのバイトを読み出します。		
EEPROM書き込み	1100 0000	XXXX XXXX	xxLL LLLL	WWWW WWWW	アドレスLのバイトに書き込みます。		
施錠ビット読み出し	0101 1000	XXXX XXXX	XXXX XXXX	xxxx x21x	施錠ビット(LB1,LB2)を読み出します。		
施錠ビット書き込み	1010 1100	1111 1 <mark>21</mark> 1	XXXX XXXX	XXXX XXXX	施錠ビット(LB1,LB2)を書き込みます。		
ヒューズビット読み出し	0101 0000	XXXX XXXX	XXXX XXXX	8765 xx43	ヒューズビットを読み出します。		
ヒューズビット書き込み	1010 1100	101x xxxx	XXXX XXXX	8765 1143	ヒューズビットを書き込みます。		
識票バ仆読み出し	0011 0000	XXXX XXXX	xxxx xxLL	RRRR RRRR	アドレスLの識票バイトを読み出します。		
校正バ仆読み出し	0011 1000	XXXX XXXX	0000 0000	RRRR RRRR	内蔵RC発振器用校正バイトを読み出します。		
注1: H: アドレス上位ハイトのビット W: 書き込みデータ (MCU入力) 4: CKSEL1 ヒューズ ビット 8: BODLEVEL ヒュー L: アドレス下位ハイトのビット 1: 施錠ビット1 (LB1) 5: RSTDISBL ヒューズ ビット 8: BODLEVEL ヒュー P: 0=下位ハイト、1=上位ハイト 2: 施錠ビット2 (LB2) 6: SPIEN ヒューズ ビット x: 0カ・1 (無視または R: 読み出しデータ (MCU出力) 3: CKSEL0 ヒューズ ビット 7: BODEN ヒューズ ビット							

低電圧直列プログラミング特性

表28. 低電圧直列プログラミング特性(特記条件を除いて、TA=-40℃~85℃, VCC=2.7~5.5V)

シンホ゛ル	項目		最小	代表	最大	単位
1/tclcl	発振器周波数	$2.7 \sim 5.5 \mathrm{V}$	0.8	1.6		MHz
tclcl	発振器周期	$2.7 \sim 5.5 \mathrm{V}$		625	1250	
t _{SHSL}	SCKパルスHレヘブル幅		2tclcl			
t _{SLSH}	SCKパルスLレヘル幅		2tclcl			20
tovsh	SCK↑に対するMOSI準備時間		tclcl			ns
tshox	SCK↑に対するMOSI保持時間		2tclcl			
t _{SLIV}	SCK↓に対するMISO出力遅延時間		10	16	32	

表29. チップ消去命令後最小待機時間

シンボル

t_{WD_ERASE}

最小待機時間

8.2ms

表30. フラッシュ メモリ, EEPROM書き込み命令後最小待機時間										
シンホ゛ル	シンホル 最小待機時間 シンホル 最小待機時間									
t _{WD_FLASH}	4.1ms	t _{WD_EEPROM}	8.2ms							

電気的特性

絶対最大定格 (警告)

動作温度 ・・・・・ -55℃ ~ +125℃
保存温度 ・・・・・・・・・・・・・・ -65℃ ~ +150℃
RESETを除くピン許容電圧 ・・・・・ -1.0V ~ VCC+0.5V
RESETピン許容電圧 ・・・・・・-1.0V ~ +13.0V
最大動作電圧 ······6.0V
入出力ピン出力電流 ・・・・・・・・・・・・・・・・・・・・・ 40.0mA
消費電流 ・・・・・ 100.0mA

(警告)

絶対最大定格を超える負担はデバイスに定常的な損傷を与えます。 絶対最大定格は負担の定格を示すためだけのもので、この値また は、この仕様書の動作特性で示された値を超える条件で動作する ことを示すものではありません。長時間の最大定格での使用はデバ イスの信頼性を損なう場合があります。

DC特性

TA=-40℃~85℃, VCC=2.7V~5.5V (特記事項を除く)

シンホル	項目	条件	最小	代表	最大	単位	
VIL	Lowレベル入力電圧	XTALを除く	-0.5		0.3VCC (<mark>注1</mark>)		
VIL1	Lowレベル入力電圧	XTAL	-0.5		0.1VCC (注1)		
VIH	Highレベル入力電圧	XTAL,RESETを除く	0.6VCC (<mark>注2</mark>)		VCC+0.5		
VIH1	Highレヘル入力電圧	XTAL	0.7VCC (<mark>注2</mark>)		VCC+0.5		
VIH2	Highレヘール入力電圧	RESET	0.85VCC (<mark>注2</mark>)		VCC+0.5		
	Lレヘ [*] ル出力電圧 (PD-オ PAC) [*] (注3)	IOL=20mA, VCC=5V			0.6	V	
Vol	(PB5を除くポートB) (753)	IOL=10mA, VCC=3V			0.5		
VOL	PB5 Lレヘル出力電圧 (注3)	IOL=12mA, VCC=5V			0.6		
		IOL=6mA, VCC=3V			0.5		
Voh	Hレヘブル出力電圧(ポートB) (<mark>注4</mark>)	IOH=-3mA, VCC=5V	4.3				
VOH		IOH=-1.5mA, VCC=3V	2.3				
IIL	I/OビンLowレベル入力漏れ電流	VCC=5.5V			8.0		
IIH	I/OビンHighレヘベル入力漏れ電流	(確実なH/L範囲)			8.0	μA	
R _I /O	I/Oピン プルアップ抵抗		35		122	kΩ	
	活動動作消費電流	VCC=3V			3.0	mA	
ICC	アイトル動作消費電流	VCC=3V		1.0	1.2	1117	
ICC	パワーダウン動作消費電流 (注5)	VCC=3V,WDT有効		9.0	15		
	// / // 動作相負电弧 (注3)	VCC=3V,WDT禁止		<1	2.0	μA	
VACIO	アナログ比較器入力オフセット電圧	VCC=5V, Vin=VCC/2			40	mV	
IACLK	アナログ比較器入力漏れ電流	vcc-5v, viii-vcc/2	-50		50	nA	
tACPD.	アナログ比較器伝播遅延時間	VCC=2.7V		750		ns	
TACPD		VCC=4.0V		500		115	

注1: Lowレベルの認識が保証される最高電圧です。

注2: Highレベルの認識が保証される最低電圧です。

注3: 各I/Oポートは安定状態(非過渡時)に於いては、検査条件(VCC=5Vで20mA、VCC=3Vで10mA)より多くの吸い込み電流を流 すことができますが、次の条件を厳守してください。

1. 全ポートのIOLの合計が100mAを超えるべきではありません。

IOLが検査条件を超える場合、VOLも仕様書での値を超えます。表の検査条件より大きな吸い込み電流を流すことは保証されません。

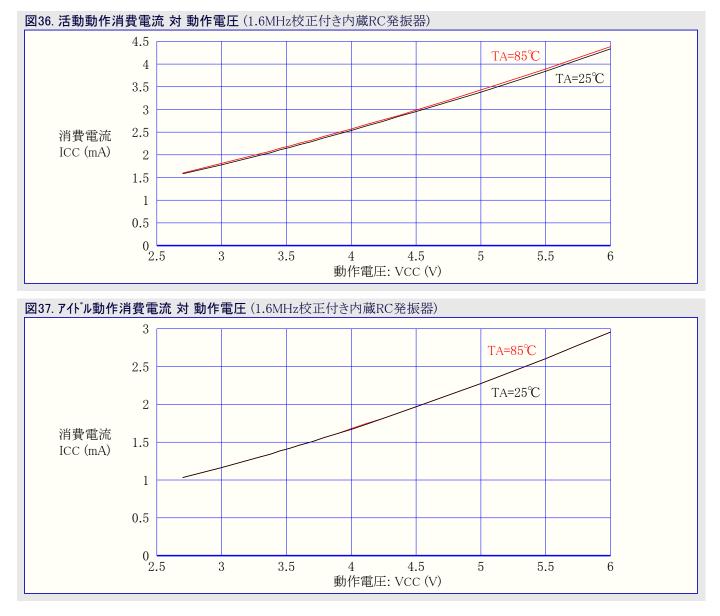
注4: 各I/Oポートは安定状態(非過渡時)に於いては、検査条件(VCC=5Vで3mA、VCC=3Vで1.5mA)より多くの吐き出し電流を流す ことができますが、次の条件を厳守してください。

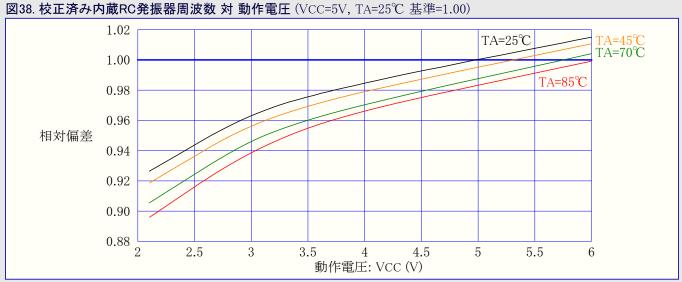
1. 全ポートのIOHの合計が100mAを超えるべきではありません。

IOHが検査条件を超える場合、VOHも仕様書での値を超えます。表の検査条件より大きな吐き出し電流を流すことは保証されません。

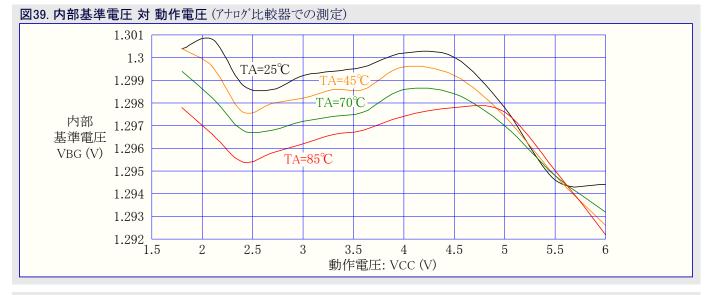
注5: パワーダウン動作時の最小電源電圧(VCC)は1.5Vです。(低電圧検出(BOD)禁止時のみ)

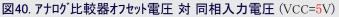
代表特性

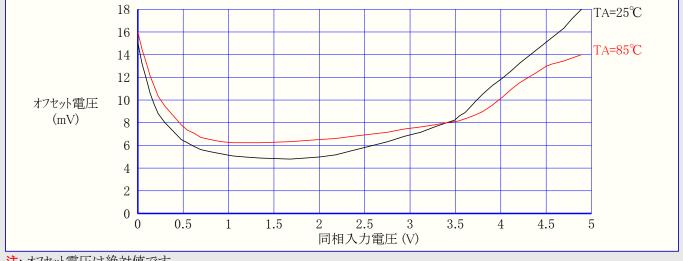

以下の図は代表的な特性を示します。これらの図は製造中に検査されていません。全ての消費電流測定は全I/Oピンが入力として設定した内部プルアップ許可で行われています。電源幅振幅の方形波発振器がクロック源として使われています。


消費電流は動作電圧、動作周波数、I/Oピンの負荷、I/Oピンの切り替え速度、命令実行、周囲温度のような様々な要素の関数です。 支配的な要素は動作電圧と動作周波数です。

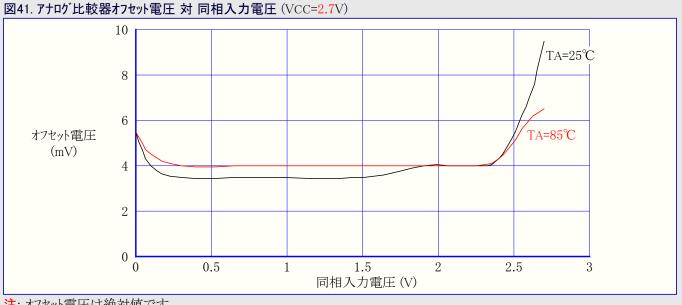
容量性負荷のピンの引き込み電流は(1つのピンに対して) CL(負荷容量)×VCC(動作電圧)×f(I/Oピンの平均切り替え周波数) として推測できます。

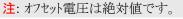

デバイスは検査範囲より高い周波数特性を示します。デバイスは注文番号が示す周波数より高い周波数での機能特性を保証されません。

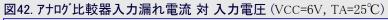

ウォッチトック、タイマ許可のパワータウン動作での消費電流とウォッチトック、タイマ禁止のパワータウン動作での消費電流間の違いは、ウォッチトック、タイマにより引き込んだ(消費した)差電流を表します。

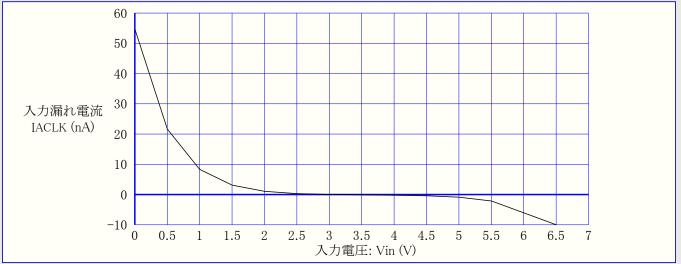


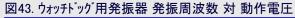
注: 公称発振周波数=1.6MHz

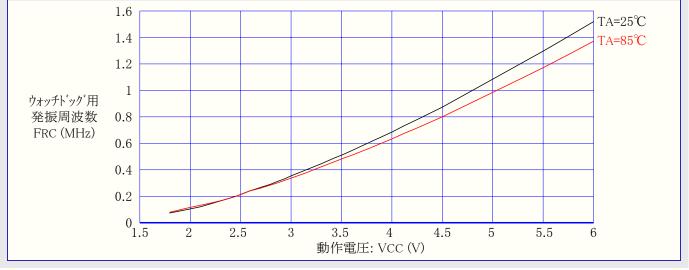


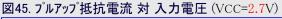


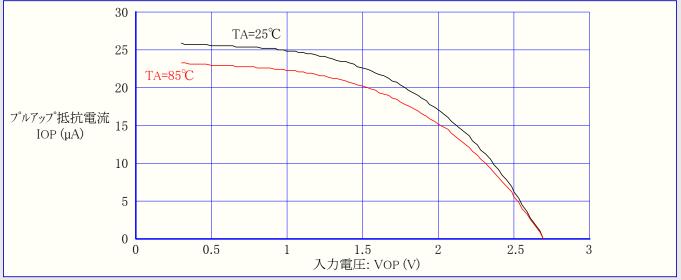

注:オフセット電圧は絶対値です。

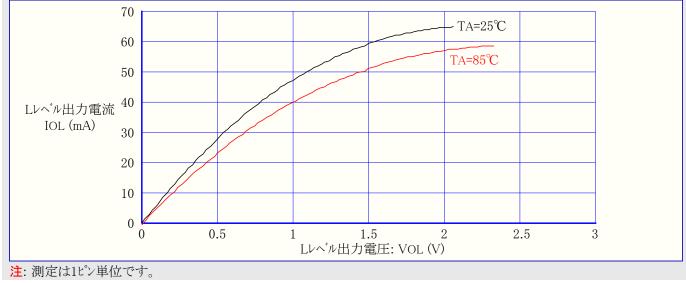






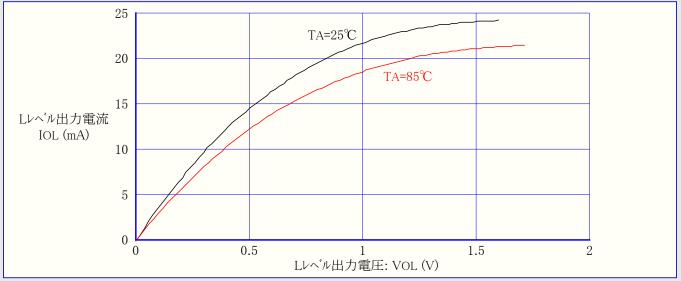





<u>注</u>: 測定は1ピン単位です。

注: 測定は1ピン単位です。

図46. I/Oピン吸い込み電流 対 出力電圧 (VCC=5V)



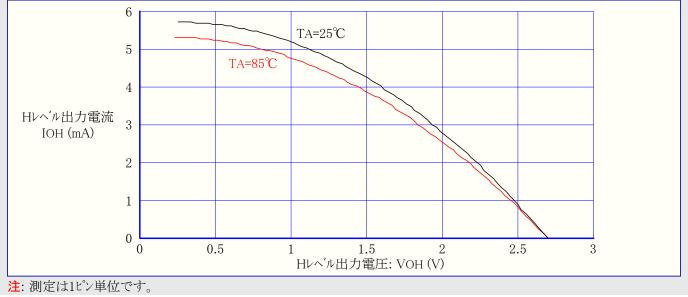
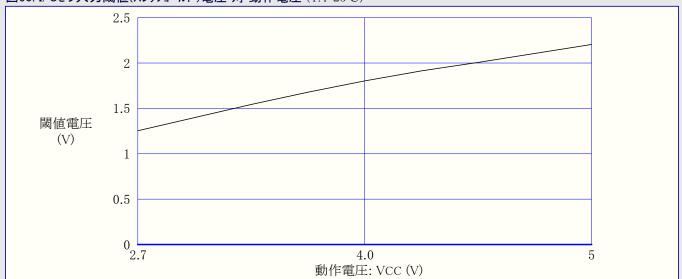
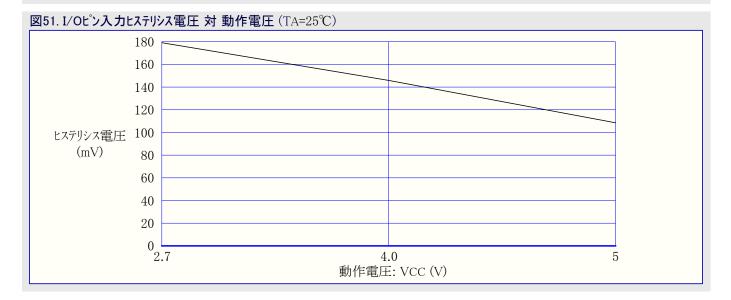

<u>注</u>: 測定は1ピン単位です。

図48. I/Oピン吸い込み電流 対 出力電圧 (VCC=2.7V)


<u>注</u>: 測定は1ピン単位です。


図49. I/Oピン吐き出し電流 対 出力電圧 (VCC=2.7V)

ATtiny15

図50. I/Oピン入力閾値(スレッショールト)電圧 対 動作電圧 (TA=25℃)

レジスタ要約

アドレス	レジスタ略称	ビット7	ビット6	ビット5	ビット4	ヒット3	ビット2	ビット1	ビットロ	頁
\$3F	SREG	I	T	H	S	V	N	Z	C	8
\$3E	予約									
\$3D	予約									
\$3C	予約									
\$3B	GIMSK	-	INT0	PCIE	-	-	-	-	-	14
\$3A	GIFR	_	INTF0	PCIF	-	-	_	_	_	14
\$39	TIMSK	-	OCIE1A	-	-	-	TOIE1	TOIE0	-	15
\$38	TIFR	_	OCF1A	-	-	-	TOV1	TOV0	-	15
\$37	予約									
\$36	予約									
\$35	MCUCR	-	PUD	SE	SM1	SM0	-	ISC01	ISC00	16
\$34	MCUSR	_	-	-	-	WDRF	BORF	EXTRF	PORF	12
\$33	TCCR0	_	_	_	_	-	CS02	CS01	CS00	19
\$32	TCNT0				タイマ/:	カウンタ0	0000	0001	0.000	19
\$31	OSCCAL		+	+		辰器校正值	l	I	I	17
\$30	TCCR1	CTC1	PWM1	COM1A1	COM1A0	CS13	CS12	CS11	CS10	21
\$2F	TCNT1	0101	1 1 1 1 1 1 1 1	Commi		カウンタ1	0012	0011	0010	21
\$2E	OCR1A		1	+		比較Aレジスタ	•	•	1	22
\$2D	OCR1B		+	+		比較Bレジスタ	•	•	•	22
\$2C	SFIOR	_	_	_	-	-	FOC1A	PSR1	PSR0	18
\$2B	予約						TOOM	1 51(1	1 51(0	10
\$2A	予約									
\$29	予約									
\$28	予約									
\$27	予約									
\$26	予約									
\$25	予約									
\$25	予約									
\$23	予約									
\$23	予約									
\$21	WDTCR	_	_	_	WDTOE	WDE	WDP2	WDP1	WDP0	24
\$20	予約				WDIOE	WDL	VVD12	WDTT	WD10	24
\$20 \$1F	予約									
\$1E	EEAR		_			EEDDOM 7	トレス レシ スタ			25
\$1D	EEDR				FEPROM	<u> </u>		1	1	$\frac{25}{25}$
\$1D \$1C	EEDR		_	_		EERIE	EEMWE	EEWE	EERE	$\frac{25}{25}$
\$1C \$1B	<u>EECR</u> 予約					EENIE	EENIVE	LEVVE	LENE	20
\$1D \$1A	予約									
\$1A \$19	予約									
\$19 \$18	PORTB	_	_	_	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	35
\$10 \$17	DDRB	_	_	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	35
\$17 \$16	PINB		_	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	35
$$09 \sim 15	予約			TINDJ	T IIND4	TINDS	I IIND2	TINDI	TINDU	00
\$09 [,] ~ \$15	ACSR	ACD	AINBG	ACO	ACI	ACIE	-	ACIS1	ACIS0	27
\$00 \$07	ADMUX	REFS1	REFS0	ADLAR	ACI	ACIE	MUX2	MUX1	MUX0	31
\$07 \$06	ADMOX	ADEN	ADSC	ADLAR	ADIF	ADIE	ADPS2	ADPS1	ADPS0	$\frac{31}{32}$
<u>\$06</u> \$05	ADCSR	ADEN	ADSC					ADESI	ADF 50	
<u>\$05</u> \$04		<u>A/Dデータレジスタ上位へ、仆(ADC9~8またはADC9~2)</u> A/Dデータレジスタ下位へ、仆(ADC7~0またはADC1~0) 33					- 33			
	ADCL 予約		1	A/D = 7V	<u>^/ [1]U_/ 1</u> [[]			
\$00~\$03	1/#7									

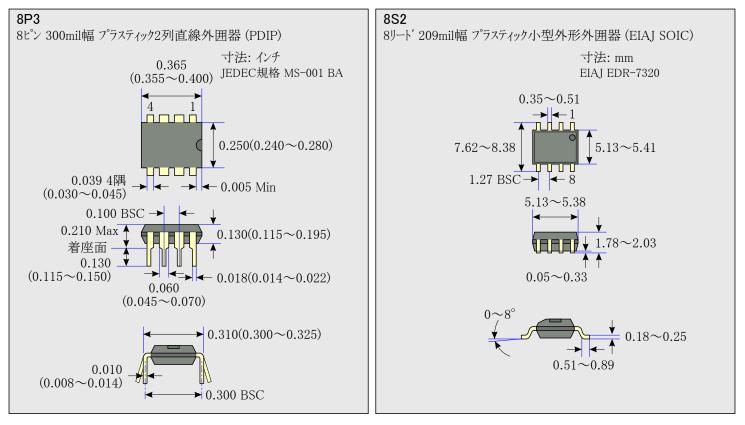
注: ・将来のデバイスとの共通性のため、予約ビットへ書く場合は0を書くべきです。予約されたI/Oメモリアトレスへは決して書くべきで はありません。

・いくつかの状態フラグは論理1を書くことによって解除(0)されます。CBIとSBI命令はI/Oレジスタ内の全ビットを操作し、設定(1)として読まれたどのフラグにも1が書き戻され、従ってフラグを解除(1)します。CBIとSBI命令は\$00~\$1FのI/Oレジスタでだけ動作します。

命令要約

ニーモニック	オペラント゛	意味	動作	フラグ	クロック
		算術、論理	理演算命令		
ADD	Rd,Rr	汎用レジスタ間の加算	$Rd \leftarrow Rd + Rr$	I,T,H,S,V,N,Z,C	1
ADC	Rd,Rr	キャリーを含めた汎用レシブスタ間の加算	$Rd \leftarrow Rd + Rr + C$	I,T,H,S,V,N,Z,C	1
SUB	Rd,Rr	汎用レジスタ間の減算	$Rd \leftarrow Rd - Rr$	I,T,H,S,V,N,Z,C	1
SUBI	Rd,K	汎用レジスタから即値の減算	$Rd \leftarrow Rd - K$	I,T,H,S,V,N,Z,C	1
SBC	Rd,Rr	キャリーを含めた汎用レジスタ間の減算	$Rd \leftarrow Rd - Rr - C$	I,T,H,S,V,N,Z,C	1
SBCI	Rd,K	汎用レジスタからキャリーと即値の減算	$Rd \leftarrow Rd - K - C$	I,T,H,S,V,N,Z,C	1
AND	Rd,Rr	汎用レジスタ間の論理積(AND)	$Rd \leftarrow Rd AND Rr$	I,T,H, S , 0 ,N,Z,C	1
ANDI	Rd,K	汎用レジスタと即値の論理積(AND)	$Rd \leftarrow Rd AND K$	I,T,H, S , 0 ,N,Z,C	1
OR	Rd,Rr	汎用レジスタ間の論理和(OR)	$Rd \leftarrow Rd OR Rr$	I,T,H, S , 0 ,N,Z,C	1
ORI	Rd,K	汎用レジスタと即値の論理和(OR)	$Rd \leftarrow Rd OR K$	I,T,H, S , V ,N,Z,C	1
EOR	Rd,Rr	汎用レジスタ間の排他的論理和(Ex-OR)	$Rd \leftarrow Rd EOR Rr$	I,T,H,S, V ,N,Z,C	1
					1
COM	Rd	1の補数(論理反転)	$Rd \leftarrow \$FF - Rd$	I,T,H,S,0,N,Z,€	
NEG	Rd		$Rd \leftarrow \$00 - Rd$	I,T,H,S,V,N,Z,C	
SBR	Rd,K	汎用レジスタの(複数)ビット設定(1)	$Rd \leftarrow Rd OR K$	I,T,H,S,O,N,Z,C	
CBR	Rd,K	汎用レジスタの(複数)ビット解除(0)	$Rd \leftarrow Rd \text{ AND (}\$FF - K)$	I,T,H, <mark>S,V,N,Z</mark> ,C	1
INC	Rd	汎用レジスタの増加(+1)	$Rd \leftarrow Rd + 1$	I,T,H,S,V,N,Z,C	1
DEC	Rd	汎用レジスタの減少(-1)	$Rd \leftarrow Rd - 1$	I,T,H, <mark>S,V,N,Z</mark> ,C	1
TST	Rd	汎用レシブタのセロとマイナス検査	$Rd \leftarrow Rd AND Rd$	I,T,H, S , U ,N,Z,C	1
CLR	Rd	汎用レジスタの全0設定(=\$00)	$Rd \leftarrow Rd EOR Rd$	I,T,H, 0 , 0 , 1 ,C	1
SER	Rd	汎用レジスタの全1設定(=\$FF)	Rd ← \$FF	I,T,H,S,V,N,Z,C	1
		分屿	支命令		
RJMP	k	相対分岐	$PC \leftarrow PC + k + 1$	I,T,H,S,V,N,Z,C	2
RCALL	k	相対サブルーチン呼び出し	$STACK \leftarrow PC, PC \leftarrow PC + k + 1$	I,T,H,S,V,N,Z,C	3
RET		サブルーチンからの復帰	PC ← STACK	I,T,H,S,V,N,Z,C	4
RETI		割り込みからの復帰	PC ← STACK	1,T,H,S,V,N,Z,C	4
CPSE	Rd,Rr	汎用レジスタ間比較、一致でスキップ	$Rd=Rrt_{2}b, PC \leftarrow PC + 2$	I,T,H,S,V,N,Z,C	1/2
CP	Rd,Rr	汎用レジスタ間の比較	Rd – Rr	I,T,H,S,V,N,Z,C	1
CPC	Rd,Rr	キャリーを含めた汎用レジスタ間の比較	Rd - Rr - C	I,T,H,S,V,N,Z,C	1
CPI	Rd,K	汎用レジスタと即値の比較	Rd – K	I,T,H,S,V,N,Z,C	1
SBRC	Rr,b	汎用レジスタのビットが解除(0)でスキップ	$Rr(b)=0$ \hat{c}	I,T,H,S,V,N,Z,C	1/2
SBRS	Rr,b	汎用レジスタのビットが設定(1)でスキップ	$\frac{Rr(b)=0.255, PC \leftarrow PC + 2}{Rr(b)=1.255, PC \leftarrow PC + 2}$	I,T,H,S,V,N,Z,C	$\frac{1/2}{1/2}$
SBIC	P,b	I/Oレシ スタのビットが解除(0)でスキップ	$P(b)=0\%\beta, PC \leftarrow PC + 2$	I, T, H, S, V, N, Z, C	$\frac{1/2}{1/2}$
		$I/OV 2 \land 200 U y \land 300 $, , , , , , , , ,	
SBIS	P,b	I/Oレジスタのビットが設定(1)でスキップ	$P(b)=1\dot{x}\dot{b}, PC \leftarrow PC + 2$	I,T,H,S,V,N,Z,C	$\frac{1/2}{1/2}$
BRBS	s,k	ステータス フラグが設定(1)で分岐	SREG(s)=1 $\%$ b, PC \leftarrow PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRBC	s,k	ステータス フラグが解除(0)で分岐	SREG(s)= 0 t_{x} b_{y} , PC \leftarrow PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BREQ	k	一致で分岐	$Z=1$ tbb, PC \leftarrow PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRNE	k	不一致で分岐	$Z=0$ $cbcb, PC \leftarrow PC + K + 1$	I,T,H,S,V,N,Z,C	1/2
BRCS	k	キャリー フラグが設定(1)で分岐	$C=1\%6, PC \leftarrow PC + K + 1$	I,T,H,S,V,N,Z,C	1/2
BRCC	k	キャリー フラグが解除(0)で分岐	C=0/дЪ, РС ← РС + К + 1	I,T,H,S,V,N,Z,C	1/2
BRSH	k	符号なしの≧で分岐	C=0726, PC ← PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRLO	k	符号なしの<で分岐	C=1なら, PC ← PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRMI	k	-(マイナス)で分岐	N=1なら, PC ← PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRPL	k	+(プラス)で分岐	N=0なら, PC ← PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRGE	k	符号付きの≧で分岐	(N EOR V)=0なら, PC ← PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRLT	k	符号付きの<で分岐	(N EOR V)=1 t sb, PC \leftarrow PC + K + 1	I,T,H,S,V,N,Z,C	1/2
BRHS	k	ハーフキャリー フラグが設定(1)で分岐	$H=1$ ¢b, $PC \leftarrow PC + K + 1$	I,T,H,S,V,N,Z,C	1/2
BRHC	k	ハーフキャリー フラグが解除(0)で分岐	$H=0$ $fsb, PC \leftarrow PC + K + 1$	I,T,H,S,V,N,Z,C	1/2 $1/2$
BRTS	k	一時7万0が設定(1)で分岐	$T=1\%6, PC \leftarrow PC + K + 1$	I,T,H,S,V,N,Z,C	$\frac{1/2}{1/2}$
BRTC	k	一時757/が解除(0)で分岐	$T=0\%6, PC \leftarrow PC + K + 1$	I,T,H,S,V,N,Z,C	$\frac{1/2}{1/2}$
BRVS	k	2の補数溢れフラグが設定(1)で分岐	$V=1/26, PC \leftarrow PC + K + 1$	I,T,H,S,V,N,Z,C	$\frac{1/2}{1/2}$
BRVC	k	2の補数溢れフラグが解除(0)で分岐	V=0 cb , PC \leftarrow PC + K + 1	I,T,H,S,V,N,Z,C	$\frac{1/2}{1/2}$
BRIE		割り込み許可で分岐	$V = 0756, PC \leftarrow PC + K + 1$ I=1726, PC \leftarrow PC + K + 1		
	k			I,T,H,S,V,N,Z,C	$\frac{1/2}{1/2}$
BRID	k	割り込み禁止で分岐	I=0なら, PC ← PC + K + 1	I,T,H,S,V,N,Z,C	1/2
K:8ビット泀	Ĕ数	P:I/Oレジスタ Rd, Rr	:汎用レジスタ(R0~R31) Z:Zレジスタ	Ż	
b: ビット(0-	$\sim 7)$	k:アドレス定数(7,12ビット) s	: ステータス フラク (C,Z,N,V,X,H,T,I)		
	• /				

ニーモニック	オペラント	意味	動作	フラグ	クロック
			動命令		
MOV	Rd,Rr	汎用レジスタ間の複写	$Rd \leftarrow Rr$	I,T,H,S,V,N,Z,C	1
LDI	Rd,K	即値の取得	$Rd \leftarrow K$	I,T,H,S,V,N,Z,C	1
LD	Rd,Z	Zレジスタ間接での取得	$Rd \leftarrow (Z)$	I,T,H,S,V,N,Z,C	2
ST	Z,Rr	Zレジスタ間接での設定	$(Z) \leftarrow Rr$	I,T,H,S,V,N,Z,C	2
IN	Rd,P	I/Oレジスタからの入力	$Rd \leftarrow P$	I,T,H,S,V,N,Z,C	1
OUT	P,Rr	I/Oレジスタへの出力	$P \leftarrow Rr$	I,T,H,S,V,N,Z,C	1
LPM		プログラム領域からZレジスタ間接での取得	$R0 \leftarrow (Z)$	I,T,H,S,V,N,Z,C	3
			係命令		
SBI	P,b	I/Oレシズタのビット設定(1)	$I/O(P,b) \leftarrow 1$	I,T,H,S,V,N,Z,C	2
CBI	P,b	I/Oレシブスタのビット解除(0)	$I/O(P,b) \leftarrow 0$	I,T,H,S,V,N,Z,C	2
LSL	Rd	論理的左ビット移動	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	I,T,H,S,V,N,Z,C	1
LSR	Rd	論理的右ビット移動	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	I,T,H,S,V,Ø,Z,C	1
ROL	Rd	キャリーを含めた左回転	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	I,T,H,S,V,N,Z,C	1
ROR	Rd	キャリーを含めた右回転	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	I,T,H,S,V,N,Z,C	1
ASR	Rd	算術的右Liット移動	$Rd(n) \leftarrow Rd(n+1), n=0 \sim 6$	I,T,H,S,V,N,Z,C	1
SWAP	Rd	ニブル(4ビット)上位/下位交換	$\operatorname{Rd}(7\sim4) \Leftrightarrow \operatorname{Rd}(3\sim0)$	I,T,H,S,V,N,Z,C	1
BSET	S	ステータスレジスタのビット設定(1)	$SREG(s) \leftarrow 1$	$1, T, \mathbb{H}, \$, \mathbb{V}, \mathbb{N}, \mathbb{I}, \mathbb{C}$	1
BCLR	S	ステータスレジスタのビット解除(0)	$SREG(s) \leftarrow 0$	0,0,0,0,0,0,0,0,0	1
BST	Rr,b	汎用レジスタのビットを一時フラグへ移動	$T \leftarrow Rr(b)$	I, T ,H,S,V,N,Z,C	1
BLD	Rd,b	一時フラグを汎用レジスタのビットへ移動	$Rd(b) \leftarrow T$	I,T,H,S,V,N,Z,C	1
SEC		キャリー フラグを設定(1)	$C \leftarrow 1$	I,T,H,S,V,N,Z,€	1
CLC		キャリー フラグを解除(0)	C ← 0	I,T,H,S,V,N,Z, 0	1
SEN		<u>負フラグを設定(1)</u>	$N \leftarrow 1$	I,T,H,S,V,ℕ,Z,C	1
CLN		<u>負フラグを解除(0)</u>	$N \leftarrow 0$	I,T,H,S,V,∅,Z,C	1
SEZ		ゼロ フラグを設定(1)	$Z \leftarrow 1$	I,T,H,S,V,N,I,C	1
CLZ		セロフラグを解除(0)	$Z \leftarrow 0$	I,T,H,S,V,N,Ø,C	1
SEI		全割り込み許可	$I \leftarrow 1$	1 ,T,H,S,V,N,Z,C	1
CLI		全割り込み禁止	$I \leftarrow 0$	0 ,T,H,S,V,N,Z,C	1
SES		符号フラグを設定(1)	$S \leftarrow 1$	I,T,H,\$,V,N,Z,C	1
CLS		符号7ラグを解除(0)	$S \leftarrow 0$	I,T,H, 0 ,V,N,Z,C	1
SEV		2の補数溢れ7ラグを設定(1)	$V \leftarrow 1$	I,T,H,S,Ψ,N,Z,C	1
CLV		2の補数溢れ75/vを解除(0)	$V \leftarrow 0$	I,T,H,S, O ,N,Z,C	1
SET		一時75/を設定(1)	$T \leftarrow 1$	I,T,H,S,V,N,Z,C	1
CLT		一時フラグを解除(0)	$T \leftarrow 0$	I,O,H,S,V,N,Z,C	1
SEH		ハーフキャリー フラグを設定(1)	$H \leftarrow 1$	I,T,⊞,S,V,N,Z,C	1
CLH		ハーフキャリー フラグを解除(0)	$H \leftarrow 0$	I,T, O ,S,V,N,Z,C	1
NOD			御命令	LT LLC VNZ C	1
NOP		無操作	—————————————————————————————————————	I,T,H,S,V,N,Z,C	1
SLEEP		休止形態開始	休止形態参照	I,T,H,S,V,N,Z,C	1
WDR		ウォッチトック タイマ リセット	ウォッチト [*] ック [*] タイマ参照	I,T,H,S,V,N,Z,C	1


注文情報

速度(MHz)	電源電圧	注文コード	外囲器	動作範囲
		ATtiny15L-1PC	8P3	
		ATtiny15L-1PU (<mark>注</mark>)	ого	一般用
	ATtiny15L-1SC 2.7~5.5V ATtiny15L-1SU (注) ATtiny15L-1PI ATtiny15L-1PU ATtiny15L-1PU 注) ATtiny15L-1SI ATtiny15L-1SI	ATtiny15L-1SC	8S2	(0°C∼70°C)
1.6		ATtiny15L-1SU (<mark>注</mark>)	032	
1.0		ATtiny15L-1PI	8P3	
		ATtiny15L-1PU (<mark>注</mark>)		工業用
		8S2	$(-40^{\circ}\text{C}\sim85^{\circ}\text{C})$	
		ATtiny15L-1SU (<mark>注</mark>)	032	

注: 有害物質使用制限に関する欧州指令(RoHS指令)適合の鉛フリー製品。またハロゲン化合物フリーで完全に安全です。

	外囲器形式
8P3	8ピン 300mil幅 プラスティック2列直線外囲器 (PDIP)
8S2	8リート 200mil幅 プラスティック小型外形外囲器 (SOIC)

外囲器情報

データシート改訂履歴

この章内の参照頁番号は、この資料が参照されていることに注意してください。この章内の改訂番号は資料の改訂番号を参照してください。

1187F - 2005年6月

- 1. 10頁の**表4**.を更新
- 2.35頁に「未接続ピン」を追加
- 3. 53頁の「**外形情報**」を更新

1187G - 2007年6月

1.1頁に「新規設計は推奨されません」を追加

1187H - 2007年9月

1. 53頁の「**注文情報**」を更新

目次

特徴 ビン配置 ······1
ピン配置 ・・・・・・・・・・・・・・・・・・・・・・1
概要 · · · · · · 2 構成図 · · · · · 2
構成図 ・・・・・2
ビン説明 ・・・・・・3
内蔵発振器 •••••• 3
構造概要 •••••• 4
汎用レジスタ ファイル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・5
ALU (Arithmetic Logic Unit) •••••• 5
実装書き換え可能なプログラム用フラッシュ メモリ ・・・・ 5
データ用EEPROMメモリ 55
サブルーチン、割り込み用スタック・・・・・・・・・・・・・5
プログラム/データ空間に対するアドレス指定種別 ・・・6 I/Oレジスタ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
リセットと割り込みの扱い ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
内部基準雷圧 ・・・・・・・・・・・・・・・・・・・・・・・・12
内部基準電圧 12 割り込みの扱い 13 休止形態 17
休止形態
校正付き内蔵RC発振器 ・・・・・・・・・・・・・・・・・・・・・・・17
高速周辺機能クロック生成用内部PLL ・・・・・・ 17
\$17 / µµµ½
タイマ/カウンタ 18 タイマ/カウンタ0前置分周器 18
タイマ/カウンタ1前置分周器 ・・・・・・・・・・・・ 18
特殊I/O機能レジスタ (SFIOR) ・・・・・・・・・・18
8ビット タイマ/カウンタ0 ・・・・・・・・・・・・・・・・・・・・・・・19
8Ľット タイマ/カウンタ1 ····· 20
ウ _オ ッチト [*] ック [*] タイマ ······ 24
EEPROMアウセス
EEPROMデータ化けの防止 ・・・・・・26
アナログ比較器 ···································27
7 ナロク ・比較器 27 A/D変換器 28 特徴 28
特徴 ······ 28
操作 ····································
前置分周と変換タイミング・・・・・・29
雑音低減機能 ・・・・・・・・・・・・・・・・・・・・31
雑音低減技術 ・・・・・・・・・・・・・・・・・・・・・・ 33
A/D変換器特性 34 入出力ホ°ートB 35 メモリ プログラミング・・・・・37
人田刀木一B 35
メモリフロクラミンク ・・・・・・・・・・・・・・・・・・・・・・・37
プログラム メモリとデータ メモリ用施錠ビット ・・・・・・ 37
ヒュース・ビット 37 識票ハイト 37 校正ハイト 37
高電圧直列プログラミング
高電圧直列プログラミング手順 ・・・・・・・・・・・・・・・38
高電圧直列プログラミング特性 ••••••••••40
低電圧直列プログラミング ・・・・・・・・・・・ 41
低電圧直列プログラミング手順 ・・・・・・・・・・ 41
低電圧直列プログラミング特性 ・・・・・・・・・・・ 42
電気的特性 · · · · · · · · · · · · · · · · · · ·
絶対最大定格 ••••••••••••••••••••••••••••••••43
DC特性 ······ 43
代表特性 · · · · · · · · · · · · · · · · · · ·
フラッシュ メモリとEEPROMのフ [°] ログラミング 37 高電圧直列フ [°] ログラミング 38 高電圧直列フ [°] ログラミング 38 高電圧直列フ [°] ログラミング 40 低電圧直列フ [°] ログラミング 41 低電圧直列フ [°] ログラミング 43 他対最大定格 43 DC特性 44 レジスタ要約 49

命令要約 ••••••	50
注文情報 •••••	52
外囲器情報 •••••	52
データシート改訂履歴 ・・・・・・・・・・・	

本社

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131

USA TEL 1(408) 441-0311 FAX 1(408) 487-2600

国外営業拠点

Atmel Asia

Unit 1–5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong TEL (852) 2245–6100 FAX (852) 2722–1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France TEL (33) 1-30-60-70-00 FAX (33) 1-30-60-71-11

Atmel Japan

104-003 東京都中央区 新川1-24-8 東熱新川ビル 9F アトメル ジャパン株式会社 TEL (81) 03-3523-3551 FAX (81) 03-3523-7581

製品窓口

ウェブサイト

www.atmel.com

文献請求

www.atmel.com/literature

技術支援 avr@atmel.com

版売窓口 www.atmel.com/contacts

© Atmel Corporation 2007.

Atmel製品は、ウェブサイト上にあるAtmelの定義、条件による標準保証で明示された内容以外の保証はありません。本製品は改良のため予告なく変更される場合があります。いかなる場合も、特許や知的技術のライセンスを与えるものではありません。Atmel製品は、生命維持装置の重要部品などのような使用を認めておりません。

本書中の[®]、™はAtmelの登録商標、商標です。 本書中の製品名などは、一般的に商標です。

© HERO 2022.

本データシートはAtmelのATtiny15L英語版データシート(改訂1187H-09/07)の翻訳日本語版です。日本語では不自然となる重複する形 容表現は省略されている場合があります。日本語では難解となる表現は大幅に意訳されている部分もあります。必要に応じて一部加 筆されています。頁割の変更により、原本より頁数が少なくなっています。

汎用入出力ポートの出力データ レジスタとピン入力は、対応関係からの理解の容易さから出力レジスタと入力レジスタで統一表現されていま す。必要と思われる部分には()内に英語表記や略称などを残す形で表記しています。ACSRのビット6がAINBGとACBGの2つの名称 が使用されていたのを、共通性からACBGに統一しました。

青字の部分はリンクとなっています。一般的に赤字の0,1は論理0,1を表します。その他の赤字は重要な部分を表します。

他のデータシートとの共通性のため、原書に対して一部構成が異なっています。